Online Subspace Learning from Gradient Orientations for Robust Image Alignment

Robust and efficient image alignment remains a challenging task, due to the massiveness of images, great illumination variations between images, partial occlusion, and corruption. To address these challenges, we propose an online image alignment method via subspace learning from image gradient orien...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 04. Juli, Seite 3383-3394
1. Verfasser: Zheng, Qingqing (VerfasserIn)
Weitere Verfasser: Wang, Yi, Heng, Pheng Ann
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM293417024
003 DE-627
005 20231225075256.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2896528  |2 doi 
028 5 2 |a pubmed24n0978.xml 
035 |a (DE-627)NLM293417024 
035 |a (NLM)30714923 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Qingqing  |e verfasserin  |4 aut 
245 1 0 |a Online Subspace Learning from Gradient Orientations for Robust Image Alignment 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Robust and efficient image alignment remains a challenging task, due to the massiveness of images, great illumination variations between images, partial occlusion, and corruption. To address these challenges, we propose an online image alignment method via subspace learning from image gradient orientations (IGOs). The proposed method integrates the subspace learning, transformed the IGO reconstruction and image alignment into a unified online framework, which is robust for aligning images with severe intensity distortions. Our method is motivated by a principal component analysis (PCA) from gradient orientations that provides more reliable low-dimensional subspace than that from pixel intensities. Instead of processing in the intensity-domain-like conventional methods, we seek alignment in the IGO domain, such that the aligned IGO of the newly arrived image can be decomposed as the sum of a sparse error and a linear composition of the IGO-PCA basis learned from previously well-aligned ones. The optimization problem is tackled by an iterative linearization that minimizes the l1 -norm of the sparse error. Furthermore, the IGO-PCA basis is adaptively updated based on incremental thin singular value decomposition, which takes the shift of IGO mean into consideration. The efficacy of the proposed method is validated on the extensive challenging datasets through image alignment, medical atlas construction, and face recognition. The experimental results demonstrate that our algorithm provides more illumination- and occlusion-robust image alignment than the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Wang, Yi  |e verfasserin  |4 aut 
700 1 |a Heng, Pheng Ann  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 7 vom: 04. Juli, Seite 3383-3394  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:7  |g day:04  |g month:07  |g pages:3383-3394 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2896528  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 7  |b 04  |c 07  |h 3383-3394