Learning Sheared EPI Structure for Light Field Reconstruction
Research in light field reconstruction focuses on synthesizing novel views with the assistance of depth information. In this paper, we present a learning-based light field reconstruction approach by fusing a set of sheared epipolar plane images (EPIs). We start by showing that a patch in a sheared E...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 04. Juli, Seite 3261-3273 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Research in light field reconstruction focuses on synthesizing novel views with the assistance of depth information. In this paper, we present a learning-based light field reconstruction approach by fusing a set of sheared epipolar plane images (EPIs). We start by showing that a patch in a sheared EPI will exhibit a clear structure when the sheared value equals the depth of that patch. By taking advantage of this pattern, a convolutional neural network (CNN) is then trained to evaluate the sheared EPIs, and output a reference score for fusing the sheared EPIs. The proposed CNN is elaborately designed to learn the similarity degree between the input sheared EPI and the ground truth EPI. Therefore, no depth information is required for network training and reasoning. We demonstrate the high performance of the proposed method through evaluations on synthetic scenes, real-world scenes, and challenging microscope light fields. We also show a further application of our proposed network for depth inference |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2019.2895463 |