Hierarchical Surface Prediction

Recently, Convolutional Neural Networks have shown promising results for 3D geometry prediction. They can make predictions from very little input data such as a single color image. A major limitation of such approaches is that they only predict a coarse resolution voxel grid, which does not capture...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 6 vom: 04. Juni, Seite 1348-1361
1. Verfasser: Hane, Christian (VerfasserIn)
Weitere Verfasser: Tulsiani, Sohubham, Malik, Jitendra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM293416877
003 DE-627
005 20250224185836.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2896296  |2 doi 
028 5 2 |a pubmed25n0977.xml 
035 |a (DE-627)NLM293416877 
035 |a (NLM)30714908 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hane, Christian  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Surface Prediction 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.05.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, Convolutional Neural Networks have shown promising results for 3D geometry prediction. They can make predictions from very little input data such as a single color image. A major limitation of such approaches is that they only predict a coarse resolution voxel grid, which does not capture the surface of the objects well. We propose a general framework, called hierarchical surface prediction (HSP), which facilitates prediction of high resolution voxel grids. The main insight is that it is sufficient to predict high resolution voxels around the predicted surfaces. The exterior and interior of the objects can be represented with coarse resolution voxels. This allows us to predict significantly higher resolution voxel grids around the surface, from which triangle meshes can be extracted. Additionally it allows us to predict properties such as surface color which are only defined on the surface. Our approach is not dependent on a specific input type. We show results for geometry prediction from color images and depth images. Our analysis shows that our high resolution predictions are more accurate than low resolution predictions 
650 4 |a Journal Article 
700 1 |a Tulsiani, Sohubham  |e verfasserin  |4 aut 
700 1 |a Malik, Jitendra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 6 vom: 04. Juni, Seite 1348-1361  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:42  |g year:2020  |g number:6  |g day:04  |g month:06  |g pages:1348-1361 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2896296  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 6  |b 04  |c 06  |h 1348-1361