Identification of Blast Resistance in a Core Collection of Foxtail Millet Germplasm

Blast, also known as leaf spot, caused by Pyricularia grisea (teleomorph: Magnaporthe grisea), is a serious disease affecting both forage and grain production in foxtail millet in India. For the identification of new and diverse sources of blast resistance, a foxtail millet core collection comprisin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 98(2014), 4 vom: 01. Apr., Seite 519-524
1. Verfasser: Sharma, Rajan (VerfasserIn)
Weitere Verfasser: Girish, A G, Upadhyaya, H D, Humayun, P, Babu, T K, Rao, V P, Thakur, R P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Blast, also known as leaf spot, caused by Pyricularia grisea (teleomorph: Magnaporthe grisea), is a serious disease affecting both forage and grain production in foxtail millet in India. For the identification of new and diverse sources of blast resistance, a foxtail millet core collection comprising 155 accessions was evaluated against the Patancheru isolate (Fx 57) of M. grisea. In a field screen during 2009 and 2010, 21 accessions were identified with neck and head blast resistance against Fx 57. In a greenhouse screen, 11 of the 155 accessions exhibited seedling leaf blast resistance to the same isolate. Further evaluation of the selected 28 accessions (found resistant to neck and head blast under field conditions during 2009 and 2010 or leaf blast in the greenhouse screen) against four M. grisea isolates (Fx 57, Fx 58, Fx 60, and Fx 62 from Patancheru, Nandyal, Vizianagaram, and Mandya, respectively) led to the identification of 16 accessions with leaf, sheath, neck, and head blast resistance to at least one isolate. Two accessions (ISe 1181 and ISe 1547) were free from head blast infection and showed resistance to leaf (score ≤3.0 on a 1-to-9 scale), neck, and sheath blast (score ≤2.0 on a 1-to-5 scale) against all four isolates. In addition, ISe 1067 and ISe 1575 also exhibited high levels of blast resistance. Blast-resistant accessions with superior agronomic and nutritional quality traits can be evaluated in multilocation yield trials before releasing them for cultivation to farmers
Beschreibung:Date Revised 20.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0191-2917
DOI:10.1094/PDIS-06-13-0593-RE