|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM293354170 |
003 |
DE-627 |
005 |
20231225075131.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1094/PDIS-06-13-0598-PDN
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0977.xml
|
035 |
|
|
|a (DE-627)NLM293354170
|
035 |
|
|
|a (NLM)30708588
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Munyaneza, J E
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a First Report of 'Candidatus Liberibacter solanacearum' on Pepper in Honduras
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In April and May of 2012, bell pepper (Capsicum annuum) plants exhibiting symptoms that resembled those of the bacterium 'Candidatus Liberibacter solanacearum' infection (2,4) were observed in commercial pepper fields in several departments in Honduras, including Francisco Morazán, Ocotepeque, El Paraíso, and Olancho. Many of the fields were infested with the psyllid Bactericera cockerelli, a vector of 'Ca. L. solanacearum' (3). The plants exhibited chlorotic or pale green apical growth and leaf cupping, sharp tapering of the leaf apex, shortened internodes, and overall stunting (2,4). All cultivars grown were affected and 20 to 75% of plants in each field were symptomatic. Pepper (var. Nataly) plant samples were collected from a total of eight affected fields (two fields per department). Total DNA was extracted from the top whole leaf tissue of a total of 19 plants, including 14 symptomatic and 5 asymptomatic pepper plants, with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (1). The DNA samples were then tested by PCR using specific primer sets OA2/OI2c and OMB 1482f/2086r to amplify a portion of 16S rDNA and the outer membrane protein (OMB) genes, respectively, of 'Ca. L. solanacearum' (1,2). OMB gene and 16S rDNA fragments of 605 and 1,168 bp, respectively, were amplified from the DNA of 7 of 14 (50%) symptomatic plants with each primer set, indicating the presence of 'Ca. L. solanacearum.' No 'Ca. L. solanacearum' was detected in the five asymptomatic plants with either primer sets. DNA amplicons with both primer sets were cloned from the DNA of plant samples collected from each of the three departments: Francisco Morazán (in the locality of Zamorano), Ocotepeque (municipality of Plan del Rancho in Sinuapa), and El Paraíso (municipality of Danlí), and four clones of each of the six amplicons were sequenced. BLASTn analysis of the 16S rDNA resulted in a single consensus sequence for all three locations (deposited in GenBank as Accession Nos. KF188226, KF188227, and KF188228) and showed 100% identity to numerous 16S rDNA sequences of 'Ca. L. solanacearum' in GenBank, including accessions HM245242, JF811596, and KC768319. Similarly, identical OMB consensus sequences were observed in all three locations (deposited in GenBank as KF188230, KF188231, and KF188233) that are 100% identical to several 'Ca. L. solanacearum' sequences in GenBank (e.g., KC768331 and CP002371) along with a second consensus sequence (deposited in GenBank as accession KF188232) from Ocotepeque that was 99% identical to the consensus sequence from the three locations and sequences in GenBank. To our knowledge, this is the first report of 'Ca. L. solanacearum' associated with pepper crops in Honduras, where pepper constitutes an economically important commodity. This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in United States, Mexico, Central America, and New Zealand (1,2,3,4). Furthermore, 'Ca. L. solanacearum' has been reported to severely damage carrot crops in Europe, where it is transmitted to carrot by the psyllids Trioza apicalis and Bactericera trigonica (3). Monitoring this pathogen and its vectors will prevent serious damage they cause to economically important crops. References: (1) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. Plant Dis. 93:1076, 2009
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Sengoda, V G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Aguilar, E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bextine, B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McCue, K F
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant disease
|d 1997
|g 98(2014), 1 vom: 01. Jan., Seite 154
|w (DE-627)NLM098181742
|x 0191-2917
|7 nnns
|
773 |
1 |
8 |
|g volume:98
|g year:2014
|g number:1
|g day:01
|g month:01
|g pages:154
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1094/PDIS-06-13-0598-PDN
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 98
|j 2014
|e 1
|b 01
|c 01
|h 154
|