A Simple Phenyl Group Introduced at the Tail of Alkyl Side Chains of Small Molecular Acceptors : New Strategy to Balance the Crystallinity of Acceptors and Miscibility of Bulk Heterojunction Enabling Highly Efficient Organic Solar Cells
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 12 vom: 01. März, Seite e1807832 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article crystallinity miscibility organic solar cell side chain small molecular acceptor |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Research on fused-ring small-molecular-acceptors (SMAs) has deeply advanced the development of organic solar cells (OSCs). Compared to fruitful studies of ladder-type cores and end-caps of SMAs, the exploration of side chains is monotonous. The widely utilized alkyl and aryl side chains usually produce a conflicting association between SMAs' crystallinity and miscibility. Herein, a fresh idea about the modification of side chains is reported to explore the subtle balance between the crystallinity and miscibility. Specifically, a phenyl is introduced to the tail of the alkyl side chain whereby a new acceptor IDIC-C4Ph is reported. Moderately weakened crystallinity is observed, while maintaining preferred absorption profiles and face-on orientations. Concurrently, remarkably improved heterojunction morphologies and stacking orientations are detected. PBDB-T:IDIC-C4Ph devices exhibit greater efficiency of 11.50% than devices from alky and aryl modified acceptors. Notably, the as-cast OSCs of PBDB-TF:IDIC-C4Ph reveal outstanding FF over 76% with the best efficiency up to 13.23%. The annealed devices reveal further increased efficiency exceeding 14% with the state of the art FF of 78.32%. Overall, an effective but easily navigable approach is demonstrated to modulate the crystallinity of SMAs toward synergistically improved morphologies and molecular orientations of bulk heterojunction enabling highly efficient OSCs |
---|---|
Beschreibung: | Date Completed 19.03.2019 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201807832 |