Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging tas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3286-3300
1. Verfasser: Bappy, Jawadul H (VerfasserIn)
Weitere Verfasser: Simons, Cody, Nataraj, Lakshmanan, Manjunath, B S, Roy-Chowdhury, Amit K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM293299226
003 DE-627
005 20231225075021.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2895466  |2 doi 
028 5 2 |a pubmed24n0977.xml 
035 |a (DE-627)NLM293299226 
035 |a (NLM)30703026 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bappy, Jawadul H  |e verfasserin  |4 aut 
245 1 0 |a Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture that utilizes resampling features, long short-term memory (LSTM) cells, and an encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts, such as JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency-domain correlation to analyze the discriminative characteristics between the manipulated and non-manipulated regions by incorporating the encoder and LSTM network. Finally, the decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With the predicted mask provided by the final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using the ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at the pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets 
650 4 |a Journal Article 
700 1 |a Simons, Cody  |e verfasserin  |4 aut 
700 1 |a Nataraj, Lakshmanan  |e verfasserin  |4 aut 
700 1 |a Manjunath, B S  |e verfasserin  |4 aut 
700 1 |a Roy-Chowdhury, Amit K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 7 vom: 25. Juli, Seite 3286-3300  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:7  |g day:25  |g month:07  |g pages:3286-3300 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2895466  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 7  |b 25  |c 07  |h 3286-3300