Bayesian Polytrees With Learned Deep Features for Multi-Class Cell Segmentation

The recognition of different cell compartments, the types of cells, and their interactions is a critical aspect of quantitative cell biology. However, automating this problem has proven to be non-trivial and requires solving multi-class image segmentation tasks that are challenging owing to the high...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3246-3260
1. Verfasser: Fehri, Hamid (VerfasserIn)
Weitere Verfasser: Gooya, Ali, Lu, Yuanjun, Meijering, Erik, Johnston, Simon A, Frangi, Alejandro F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM293299196
003 DE-627
005 20231225075021.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2895455  |2 doi 
028 5 2 |a pubmed24n0977.xml 
035 |a (DE-627)NLM293299196 
035 |a (NLM)30703023 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fehri, Hamid  |e verfasserin  |4 aut 
245 1 0 |a Bayesian Polytrees With Learned Deep Features for Multi-Class Cell Segmentation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The recognition of different cell compartments, the types of cells, and their interactions is a critical aspect of quantitative cell biology. However, automating this problem has proven to be non-trivial and requires solving multi-class image segmentation tasks that are challenging owing to the high similarity of objects from different classes and irregularly shaped structures. To alleviate this, graphical models are useful due to their ability to make use of prior knowledge and model inter-class dependences. Directed acyclic graphs, such as trees, have been widely used to model top-down statistical dependences as a prior for improved image segmentation. However, using trees, a few inter-class constraints can be captured. To overcome this limitation, we propose polytree graphical models that capture label proximity relations more naturally compared to tree-based approaches. A novel recursive mechanism based on two-pass message passing was developed to efficiently calculate closed-form posteriors of graph nodes on polytrees. The algorithm is evaluated on simulated data and on two publicly available fluorescence microscopy datasets, outperforming directed trees and three state-of-the-art convolutional neural networks, namely, SegNet, DeepLab, and PSPNet. Polytrees are shown to outperform directed trees in predicting segmentation error by highlighting areas in the segmented image that do not comply with prior knowledge. This paves the way to uncertainty measures on the resulting segmentation and guide subsequent segmentation refinement 
650 4 |a Journal Article 
700 1 |a Gooya, Ali  |e verfasserin  |4 aut 
700 1 |a Lu, Yuanjun  |e verfasserin  |4 aut 
700 1 |a Meijering, Erik  |e verfasserin  |4 aut 
700 1 |a Johnston, Simon A  |e verfasserin  |4 aut 
700 1 |a Frangi, Alejandro F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 7 vom: 25. Juli, Seite 3246-3260  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:7  |g day:25  |g month:07  |g pages:3246-3260 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2895455  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 7  |b 25  |c 07  |h 3246-3260