Dynamic Saliency-Aware Regularization for Correlation Filter-Based Object Tracking

With a good balance between tracking accuracy and speed, correlation filter (CF) has become one of the best object tracking frameworks, based on which many successful trackers have been developed. Recently, spatially regularized CF tracking (SRDCF) has been developed to remedy the annoying boundary...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3232-3245
1. Verfasser: Feng, Wei (VerfasserIn)
Weitere Verfasser: Han, Ruize, Guo, Qing, Zhu, Jianke, Wang, Song
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM293299188
003 DE-627
005 20231225075021.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2895411  |2 doi 
028 5 2 |a pubmed24n0977.xml 
035 |a (DE-627)NLM293299188 
035 |a (NLM)30703022 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Wei  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Saliency-Aware Regularization for Correlation Filter-Based Object Tracking 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With a good balance between tracking accuracy and speed, correlation filter (CF) has become one of the best object tracking frameworks, based on which many successful trackers have been developed. Recently, spatially regularized CF tracking (SRDCF) has been developed to remedy the annoying boundary effects of CF tracking, thus further boosting the tracking performance. However, SRDCF uses a fixed spatial regularization map constructed from a loose bounding box and its performance inevitably degrades when the target or background show significant variations, such as object deformation or occlusion. To address this problem, we propose a new dynamic saliency-aware regularized CF tracking (DSAR-CF) scheme. In DSAR-CF, a simple yet effective energy function, which reflects the object saliency and tracking reliability in the spatial-temporal domain, is defined to guide the online updating of the regularization weight map using an efficient level-set algorithm. Extensive experiments validate that the proposed DSAR-CF leads to better performance in terms of accuracy and speed than the original SRDCF 
650 4 |a Journal Article 
700 1 |a Han, Ruize  |e verfasserin  |4 aut 
700 1 |a Guo, Qing  |e verfasserin  |4 aut 
700 1 |a Zhu, Jianke  |e verfasserin  |4 aut 
700 1 |a Wang, Song  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 7 vom: 25. Juli, Seite 3232-3245  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:7  |g day:25  |g month:07  |g pages:3232-3245 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2895411  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 7  |b 25  |c 07  |h 3232-3245