Toward Deep Universal Sketch Perceptual Grouper

Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch pe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3219-3231
1. Verfasser: Li, Ke (VerfasserIn)
Weitere Verfasser: Pang, Kaiyue, Song, Yi-Zhe, Xiang, Tao, Hospedales, Timothy M, Zhang, Honggang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM29329917X
003 DE-627
005 20231225075021.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2895155  |2 doi 
028 5 2 |a pubmed24n0977.xml 
035 |a (DE-627)NLM29329917X 
035 |a (NLM)30703021 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Ke  |e verfasserin  |4 aut 
245 1 0 |a Toward Deep Universal Sketch Perceptual Grouper 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch perceptual grouper. That is, a grouper that can be applied to sketches of any category created with any drawing style and ability, to group constituent strokes/segments into semantically meaningful object parts. The first obstacle to achieving this goal is the lack of large-scale datasets with grouping annotation. To overcome this, we contribute the largest sketch perceptual grouping dataset to date, consisting of 20 000 unique sketches evenly distributed over 25 object categories. Furthermore, we propose a novel deep perceptual grouping model learned with both generative and discriminative losses. The generative loss improves the generalization ability of the model, while the discriminative loss guarantees both local and global grouping consistency. Extensive experiments demonstrate that the proposed grouper significantly outperforms the state-of-the-art competitors. In addition, we show that our grouper is useful for a number of sketch analysis tasks, including sketch semantic segmentation, synthesis, and fine-grained sketch-based image retrieval 
650 4 |a Journal Article 
700 1 |a Pang, Kaiyue  |e verfasserin  |4 aut 
700 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
700 1 |a Xiang, Tao  |e verfasserin  |4 aut 
700 1 |a Hospedales, Timothy M  |e verfasserin  |4 aut 
700 1 |a Zhang, Honggang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 7 vom: 25. Juli, Seite 3219-3231  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:7  |g day:25  |g month:07  |g pages:3219-3231 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2895155  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 7  |b 25  |c 07  |h 3219-3231