Improving the description of solvent pairwise interactions using local solute/solvent three-body functions. The case of halides and carboxylates in aqueous environment
© 2019 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 40(2019), 11 vom: 30. Apr., Seite 1209-1218 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't anion hydration force field salt solution |
Zusammenfassung: | © 2019 Wiley Periodicals, Inc. We propose a general strategy to remediate force-field artifacts in describing pairwise interactions among similar molecules M in the vicinity of another chemical species, C, like water molecules interacting at short distance from a monoatomic ion. This strategy is based on introducing a three-body potential energy term that alters the pairwise interactions among M-type molecules when they lie at short range from the species C. In other words the species C is the center of a space domain where the pairwise interactions among the molecules M is altered. Here, we apply it to improve the description of the water interactions provided by the polarizable water model TCPE/2013 in the vicinity of halides, from F- to At- , and of the prototypical carboxylate anion CH3 COO- . We show the accuracy and the transferability of such an approach to investigate not only the hydration process of single anions but also of a salt solution NH4+/Cl- in aqueous phase. This strategy can be used to remediate the drawbacks of any kind of force fields. © 2019 Wiley Periodicals, Inc |
---|---|
Beschreibung: | Date Completed 15.05.2020 Date Revised 15.05.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.25779 |