|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM293267588 |
003 |
DE-627 |
005 |
20231225074939.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1094/PDIS-06-14-0567-PDN
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0977.xml
|
035 |
|
|
|a (DE-627)NLM293267588
|
035 |
|
|
|a (NLM)30699795
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, F-L
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a First Report of Powdery Mildew Caused by Blumeria graminis on Festuca arundinacea in China
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Tall fescue (Festuca arundinacea Schreb), a predominant cool-season perennial grass, is widely used as forage and turf grasses in China. In July 2013, powdery mildew was observed on 10 F. arundinacea lawns (about 0.5 ha in total) in Urumchi, Xinjiang Province, China, with 20 to 30% of the area being infected. Signs of the disease initially appeared as irregular white mycelial colonies on the adaxial surface of infected leaves. As the disease progressed, the colonies covered the whole adaxial surface and white patches appeared on the abaxial surface of infected leaves. Conidiophores were unbranched and cylindrical with swollen bases, measuring 13.3 to 15 × 16.7 to 20 μm, and borne vertically on hyphae. Each conidiophore produced 10 to 18 conidia in a chain. The conidia were oval, one-celled, and colorless, measuring 8.1 to 9.8 × 26 to 29.7 μm. Cleistothecia were black, spherical, and 164.3 to 207.3 μm in diameter, each of which contained 9 to 26 asci. Asci were oblong or ovate, measuring 32.1 to 40 × 85.7 to 96.4 μm. Asci were petiolate, containing eight ascospores. Ascospores were round to oval, colorless, one-celled, measuring 19.1 to 22.5 × 11.7 to 13.6 μm. Based on morphological characteristics of the anamorph and the teleomorph, the fungus was identified as Blumeria graminis (DC.) Speer. Additionally, the internal transcribed spacer (ITS) of 563 bp was amplified from DNA of conidia using ITS1 and ITS4 primers (4). The ITS sequence was deposited in GenBank (Accession No. KF545644). The ITS sequence showed 100% homogeneity with those of B. graminis on Poa pratensis in Swizerland (AB273540) and on P. bulbosa in Iran (AB273551) (1), which further confirmed the identification. Ten 3-week-old healthy plants were inoculated by spraying a spore suspension (1 × 105 conidia ml-1) made from conidia brushed from infected plants, and 10 plants sprayed with sterile distilled water were served as controls. All the plants were placed in the same growth chamber at 20°C, 80% humidity, and 16-h photoperiod. Twenty days after inoculation, typical signs and symptoms of powdery mildew were observed on all the inoculated plants, whereas no symptoms were observed on the controls. Microscopic and ITS analysis showed that the fungus on the inoculated plants is identical to that on diseased field plants. B. graminis on F. arundinacea has been observed in a few European countries (1), Israel (3), and the United States (2). To our knowledge, this is the first report of powdery mildew caused by B. graminis on F. arundinacea in China, which will increase the difficulty to prevent powdery mildew on grasses including cereals. References: (1) U. Braun. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena-Stuttgart-New York, 1995. (2) F. M. Dugan and G. Newcombe. Pacific Northwest Fungi. 2:1-5, 2007. (3) S. O. Voytyuk et al. Biodiversity of the Powdery Mildew Fungi (Erysiphales, Ascomycota) of Israel Vol. 7. Biodiversity of Cyanoprocaryotes, Algae and Fungi of Israel. Koeltz Scientific Books, 2009. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhang, Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, K-D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Y-J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiang, J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, X-Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tan, G-X
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, C-W
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant disease
|d 1997
|g 98(2014), 11 vom: 31. Nov., Seite 1585
|w (DE-627)NLM098181742
|x 0191-2917
|7 nnns
|
773 |
1 |
8 |
|g volume:98
|g year:2014
|g number:11
|g day:31
|g month:11
|g pages:1585
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1094/PDIS-06-14-0567-PDN
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 98
|j 2014
|e 11
|b 31
|c 11
|h 1585
|