|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM293265828 |
003 |
DE-627 |
005 |
20231225074937.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1094/PDIS-03-14-0298-PDN
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0977.xml
|
035 |
|
|
|a (DE-627)NLM293265828
|
035 |
|
|
|a (NLM)30699618
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cho, S E
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a First Report of Powdery Mildew Caused by Golovinomyces biocellatus on Agastache rugosa in Korea
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, known as Korean mint, is an aromatic plant in the Lamiaceae. It is widely distributed in East Asian countries and is used as a Chinese traditional medicine. In Korea, fresh leaves are commonly added to fish soups and stews (3). In November 2008, several dozen Korean mints plants growing outdoors in Gimhae City, Korea, were found to be severely infected with a powdery mildew. The same symptoms had been observed in Korean mint plots in Busan and Miryang cities from 2008 to 2013. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on stems and both sides of the leaves. Severe disease pressure caused withering and senescence of the leaves. Voucher specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 105 to 188 × 10 to 13 μm and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of the conidiophores were straight, cylindrical, slightly constricted at the base, and 37 to 58 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 25 to 40 × 15 to 23 μm (length/width ratio = 1.4 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were obconically rounded at the apex and subtruncate at the base. Germ tubes were produced at the perihilar position of conidia. No chasmothecia were observed. The structures described above were typical of the Oidium subgenus Reticuloidium anamorph of the genus Golovinomyces. The measurements and morphological characteristics were compatible with those of G. biocellatus (Ehrenb.) V.P. Heluta (1). To confirm the identification, molecular analysis of the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of isolate KUS-F27200 was conducted. The complete ITS rDNA sequence was amplified using primers ITS5 and P3 (4). The resulting 514-bp sequence was deposited in GenBank (Accession No. KJ585415). A GenBank BLAST search of the Korean isolate sequence showed >99% similarity with the ITS sequence of many G. biocellatus isolates on plants in the Lamiaceae (e.g., Accession Nos. AB307669, AB769437, and JQ340358). Pathogenicity was confirmed by gently pressing diseased leaf onto leaves of five healthy, potted Korean mint plants. Five non-inoculated plants served as a control treatment. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on inoculated plants was identical morphologically to that observed on the original diseased plants. The pathogenicity test was repeated with identical results. A powdery mildew on A. rugosa caused by G. biocellatus was reported from Romania (2). To our knowledge, this is the first report of powdery mildew caused by G. biocellatus on A. rugosa in Korea. The plant is mostly grown using organic farming methods with limited chemical control options. Therefore, alternative control measures should be considered. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, USDA ARS, retrieved 17 February 2014. (3) T. H. Kim et al. J. Sci. Food Agric. 81:569, 2001. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Park, J H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hong, S H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choi, I Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shin, H D
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant disease
|d 1997
|g 98(2014), 9 vom: 31. Sept., Seite 1278
|w (DE-627)NLM098181742
|x 0191-2917
|7 nnns
|
773 |
1 |
8 |
|g volume:98
|g year:2014
|g number:9
|g day:31
|g month:09
|g pages:1278
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1094/PDIS-03-14-0298-PDN
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 98
|j 2014
|e 9
|b 31
|c 09
|h 1278
|