The Dual Roles of Zinc Sulfate in Mitigating Peach Gummosis

Peach gummosis, caused by Lasiodiplodia theobromae, is one of the most prevalent diseases that affects peach production. In this study, we investigated the effect of zinc sulfate on inoculated peach shoots, as well as on the growth, morphology, and pathogenicity of L. theobromae in vitro, in the lab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 100(2016), 2 vom: 08. Feb., Seite 345-351
1. Verfasser: Li, Zhi (VerfasserIn)
Weitere Verfasser: Fan, Yanchun, Gao, Lei, Cao, Xiu, Ye, Junli, Li, Guohuai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Peach gummosis, caused by Lasiodiplodia theobromae, is one of the most prevalent diseases that affects peach production. In this study, we investigated the effect of zinc sulfate on inoculated peach shoots, as well as on the growth, morphology, and pathogenicity of L. theobromae in vitro, in the laboratory. Zinc deficiency was detected in diseased peach shoots by micronutrient analysis (Cu, Mn, and Zn) and confirmed by the measurement of transcript levels of zinc transporters (ZIP4, HAM4, and ZAT). The zinc was transferred from the diseased peach shoots to the peach gum. Applying zinc sulfate to the diseased peach shoots reduced the severity of peach gummosis, showing significantly reduced lesion size and gum weight, as well as downregulation of cell wall degradation-related gene (PG and PME) compared with the control. Zinc sulfate also specifically controlled peach gummosis under L. theobromae phytotoxin stress and induced the expression of defense-related genes (PR4, CHI, PAL, PGIP, and GNS3). In addition, in vitro mycelial growth of L. theobromae was significantly inhibited by zinc sulfate compared with the control. Zinc sulfate caused abnormal hyphae at 25 mM and swelling hyphal tips at 50 mM. Exposure of L. theobromae to zinc sulfate for 20 min inhibited the ability of the pathogen to cause peach gummosis. Our physiological and molecular data demonstrated that zinc sulfate has a dual function by reducing susceptibility in the host and by direct inhibition of the pathogen
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0191-2917
DOI:10.1094/PDIS-01-15-0131-RE