Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants : Prospects for salinity tolerance and yield stability

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 129(2018) vom: 01. Aug., Seite 411-420
1. Verfasser: Hussain, M Iftikhar (VerfasserIn)
Weitere Verfasser: Al-Dakheel, Abdullah J, Reigosa, Manuel J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Carbon isotopes discrimination Chenopodium quinoa Genotypes Irrigation Isotope ecology Salinity Water-use efficiency Yield Water mehr... 059QF0KO0R Carbon 7440-44-0 Nitrogen N762921K75
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Quinoa is an important nutritive crop that can play a strategic role in the development of marginal and degraded lands. Genotypic variations in carbon isotope composition (δ13C), carbon isotope discrimination (Δ13C), ratio of intercellular to atmospheric CO2 concentration (Ci/Ca), intrinsic water use efficiency (iWUE), seed yield and grain protein contents were analyzed in 6 quinoa cultivars grown in the field under saline conditions (0, 10, 20 dS m-1). Significant variations occurred in dry biomass, seed yield, plant height, number of branches, number of panicles, panicle weight, harvest index, N and C content. Some genotypes produced yields with values significantly higher than 2.04 t ha-1 (Q12), with an average increased to 2.58 t ha-1 (AMES22157). The present study indicates a large variation in Δ13C for salinity treatments (3.43‰) and small magnitude of variations among genotypes (0.95‰). Results showed that Δ might be used as an important index for screening, and selection of the salt tolerant quinoa genotypes with high iWUE. Quinoa genotypes differs in foliar 13C and 15N isotope composition, which reflected complex interactions of salinity and plant carbon and nitrogen metabolisms. Grain protein contents were found higher in Q19 and Q31 and lowest in Q26. The study demonstrates that AMES22157 and Q12, were salt tolerant and high yielder while the AMES22157 was more productive. This study provides a reliable measure of morpho-physiological, biochemical and isotopic responses of quinoa cultivars to salinity in hyper arid UAE climate and it may be valuable in the future breeding programs. The development of genotypes having both higher water use efficiency and yield potential would be a very useful contribution for producers in the dry region of Arabian Peninsula
Beschreibung:Date Completed 04.02.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2018.06.023