Seeding and Cross-Seeding Aggregations of Aβ40 and Its N-Terminal-Truncated Peptide Aβ11-40
In the amyloid plaques of Alzheimer's disease (AD) patients, a large number of N-terminal-truncated amyloid β (Aβ) peptides such as Aβ11-40 have been identified in addition to the full-length Aβ peptides. However, little is known about the roles of the N-terminal-truncated peptides in AD pathol...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 7 vom: 19. Feb., Seite 2821-2831 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2019
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article Research Support, Non-U.S. Gov't Amyloid beta-Peptides Immobilized Proteins Peptide Fragments amyloid beta-protein (1-40) amyloid beta-protein (11-40) |
Résumé: | In the amyloid plaques of Alzheimer's disease (AD) patients, a large number of N-terminal-truncated amyloid β (Aβ) peptides such as Aβ11-40 have been identified in addition to the full-length Aβ peptides. However, little is known about the roles of the N-terminal-truncated peptides in AD pathological process. Herein, seeding and cross-seeding aggregations of Aβ40 and its N-terminal-truncated Aβ11-40 were investigated in the solution and on the surfaces of chips with immobilized seeds by extensive biophysical and biological analyses. The results showed that Aβ40 and Aβ11-40 aggregates could seed both homologous and heterologous aggregations of the two monomers. However, the capability and characteristics of the seeding (homologous aggregation) and cross-seeding (heterologous aggregation) were significantly different. Aβ40 seeds showed stronger acceleration effects on the aggregations than Aβ11-40 seeds and induced β-sheet-rich fibrous aggregates of similar cytotoxicities for the two monomers. This indicates that Aβ40 and Aβ11-40 had similar aggregation pathways in the seeding and cross-seeding on Aβ40 seeds. By contrast, Aβ11-40 seeds led to different aggregation pathways of Aβ40 and Aβ11-40. Pure Aβ11-40 aggregates had higher toxicity than Aβ40 aggregates, and as seeds, Aβ11-40 seeds induced Aβ40 to form aggregates of higher cytotoxicity. However, homologous Aβ11-40 aggregates induced by Aβ11-40 seeds showed lower cytotoxicity than pure Aβ11-40 aggregates. The results suggest that Aβ11-40 plays an important role in the pathological process of AD |
---|---|
Description: | Date Completed 22.06.2020 Date Revised 22.06.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b03599 |