Seeding and Cross-Seeding Aggregations of Aβ40 and Its N-Terminal-Truncated Peptide Aβ11-40

In the amyloid plaques of Alzheimer's disease (AD) patients, a large number of N-terminal-truncated amyloid β (Aβ) peptides such as Aβ11-40 have been identified in addition to the full-length Aβ peptides. However, little is known about the roles of the N-terminal-truncated peptides in AD pathol...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 7 vom: 19. Feb., Seite 2821-2831
1. Verfasser: Hao, Xiuping (VerfasserIn)
Weitere Verfasser: Zheng, Jie, Sun, Yan, Dong, Xiaoyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amyloid beta-Peptides Immobilized Proteins Peptide Fragments amyloid beta-protein (1-40) amyloid beta-protein (11-40)
Beschreibung
Zusammenfassung:In the amyloid plaques of Alzheimer's disease (AD) patients, a large number of N-terminal-truncated amyloid β (Aβ) peptides such as Aβ11-40 have been identified in addition to the full-length Aβ peptides. However, little is known about the roles of the N-terminal-truncated peptides in AD pathological process. Herein, seeding and cross-seeding aggregations of Aβ40 and its N-terminal-truncated Aβ11-40 were investigated in the solution and on the surfaces of chips with immobilized seeds by extensive biophysical and biological analyses. The results showed that Aβ40 and Aβ11-40 aggregates could seed both homologous and heterologous aggregations of the two monomers. However, the capability and characteristics of the seeding (homologous aggregation) and cross-seeding (heterologous aggregation) were significantly different. Aβ40 seeds showed stronger acceleration effects on the aggregations than Aβ11-40 seeds and induced β-sheet-rich fibrous aggregates of similar cytotoxicities for the two monomers. This indicates that Aβ40 and Aβ11-40 had similar aggregation pathways in the seeding and cross-seeding on Aβ40 seeds. By contrast, Aβ11-40 seeds led to different aggregation pathways of Aβ40 and Aβ11-40. Pure Aβ11-40 aggregates had higher toxicity than Aβ40 aggregates, and as seeds, Aβ11-40 seeds induced Aβ40 to form aggregates of higher cytotoxicity. However, homologous Aβ11-40 aggregates induced by Aβ11-40 seeds showed lower cytotoxicity than pure Aβ11-40 aggregates. The results suggest that Aβ11-40 plays an important role in the pathological process of AD
Beschreibung:Date Completed 22.06.2020
Date Revised 22.06.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b03599