Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

© 2019 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 25(2019), 5 vom: 01. Mai, Seite 1746-1764
1. Verfasser: Voigt, Carolina (VerfasserIn)
Weitere Verfasser: Marushchak, Maija E, Mastepanov, Mikhail, Lamprecht, Richard E, Christensen, Torben R, Dorodnikov, Maxim, Jackowicz-Korczyński, Marcin, Lindgren, Amelie, Lohila, Annalea, Nykänen, Hannu, Oinonen, Markku, Oksanen, Timo, Palonen, Vesa, Treat, Claire C, Martikainen, Pertti J, Biasi, Christina
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CO2 climate warming greenhouse gas mesocosm methane oxidation permafrost-carbon-feedback Greenhouse Gases Carbon Dioxide mehr... 142M471B3J Methane OP0UW79H66
LEADER 01000naa a22002652 4500
001 NLM293091188
003 DE-627
005 20231225074543.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14574  |2 doi 
028 5 2 |a pubmed24n0976.xml 
035 |a (DE-627)NLM293091188 
035 |a (NLM)30681758 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Voigt, Carolina  |e verfasserin  |4 aut 
245 1 0 |a Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.06.2019 
500 |a Date Revised 13.06.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 John Wiley & Sons Ltd. 
520 |a Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2 ) and methane (CH4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2 -C m-2  day-1 ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2 -C m-2  day-1 , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (14 C) of respired CO2 , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2 , CH4 , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a CO2 
650 4 |a climate warming 
650 4 |a greenhouse gas 
650 4 |a mesocosm 
650 4 |a methane oxidation 
650 4 |a permafrost-carbon-feedback 
650 7 |a Greenhouse Gases  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
700 1 |a Marushchak, Maija E  |e verfasserin  |4 aut 
700 1 |a Mastepanov, Mikhail  |e verfasserin  |4 aut 
700 1 |a Lamprecht, Richard E  |e verfasserin  |4 aut 
700 1 |a Christensen, Torben R  |e verfasserin  |4 aut 
700 1 |a Dorodnikov, Maxim  |e verfasserin  |4 aut 
700 1 |a Jackowicz-Korczyński, Marcin  |e verfasserin  |4 aut 
700 1 |a Lindgren, Amelie  |e verfasserin  |4 aut 
700 1 |a Lohila, Annalea  |e verfasserin  |4 aut 
700 1 |a Nykänen, Hannu  |e verfasserin  |4 aut 
700 1 |a Oinonen, Markku  |e verfasserin  |4 aut 
700 1 |a Oksanen, Timo  |e verfasserin  |4 aut 
700 1 |a Palonen, Vesa  |e verfasserin  |4 aut 
700 1 |a Treat, Claire C  |e verfasserin  |4 aut 
700 1 |a Martikainen, Pertti J  |e verfasserin  |4 aut 
700 1 |a Biasi, Christina  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 25(2019), 5 vom: 01. Mai, Seite 1746-1764  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:5  |g day:01  |g month:05  |g pages:1746-1764 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14574  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 5  |b 01  |c 05  |h 1746-1764