When does a hydrogen bond become a van der Waals interaction? a topological answer
© 2019 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 40(2019), 8 vom: 30. März, Seite 937-943 |
---|---|
1. Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article H-bond Van der Waals quantum theory atoms in molecule source function |
Zusammenfassung: | © 2019 Wiley Periodicals, Inc. The hydrogen bond (H-bond) is among the most important noncovalent interaction (NCI) for bioorganic compounds. However, no "energy border" has yet been identified to distinguish it from van der Waals (vdW) interaction. Thus, classifying NCIs and interpreting their physical and chemical importance remain open to great subjectivity. In this work, the "energy border" between vdW and H-bonding interactions was identified using a dimer of water, as well as for a series of classical and nonclassical H-bonding systems. Through means of the quantum theory of atoms in molecules and in particular the source function, it was possible to clearly identify the transition from H-bonding to vdW bonding via analysis of the electronic structure. This "energy border" was identified both on elongating the interatomic interaction and by varying the contact angle. Hence, this study also redefines the "critic angle" previously proposed by Galvão et al. (J. Phys. Chem. A 2013, 117, 12668). Consequently, such "energy border" through an analysis of atomic basins volume variation was possible to identify the end of long-range interactions. © 2019 Wiley Periodicals, Inc |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.25774 |