Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 12 vom: 30. März, Seite e1807898 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article M d-band center and O p-band center lattice oxygen evolution oxygen evolution reaction spinel oxides surface reconstruction |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Developing highly active electrocatalysts for oxygen evolution reaction (OER) is critical for the effectiveness of water splitting. Low-cost spinel oxides have attracted increasing interest as alternatives to noble metal-based OER catalysts. A rational design of spinel catalysts can be guided by studying the structural/elemental properties that determine the reaction mechanism and activity. Here, using density functional theory (DFT) calculations, it is found that the relative position of O p-band and MOh (Co and Ni in octahedron) d-band center in ZnCo2- x Nix O4 (x = 0-2) correlates with its stability as well as the possibility for lattice oxygen to participate in OER. Therefore, it is testified by synthesizing ZnCo2- x Nix O4 spinel oxides, investigating their OER performance and surface evolution. Stable ZnCo2- x Nix O4 (x = 0-0.4) follows adsorbate evolving mechanism under OER conditions. Lattice oxygen participates in the OER of metastable ZnCo2- x Nix O4 (x = 0.6, 0.8) which gives rise to continuously formed oxyhydroxide as surface-active species and consequently enhances activity. ZnCo1.2 Ni0.8 O4 exhibits performance superior to the benchmarked IrO2 . This work illuminates the design of highly active metastable spinel electrocatalysts through the prediction of the reaction mechanism and OER activity by determining the relative positions of the O p-band and the MOh d-band center |
---|---|
Beschreibung: | Date Completed 19.03.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201807898 |