Mutual Component Convolutional Neural Networks for Heterogeneous Face Recognition

HHeterogeneous face recognition (HFR) aims to identify a person from different facial modalities such as visible and near-infrared images. The main challenges of HFR lie in the large modality discrepancy and insufficient training samples. In this paper, we propose the Mutual Component Convolutional...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 23. Jan.
1. Verfasser: Deng, Zhongying (VerfasserIn)
Weitere Verfasser: Peng, Xiaojiang, Li, Zhifeng, Qiao, Yu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM293043914
003 DE-627
005 20250224172957.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2894272  |2 doi 
028 5 2 |a pubmed25n0976.xml 
035 |a (DE-627)NLM293043914 
035 |a (NLM)30676957 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Deng, Zhongying  |e verfasserin  |4 aut 
245 1 0 |a Mutual Component Convolutional Neural Networks for Heterogeneous Face Recognition 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a HHeterogeneous face recognition (HFR) aims to identify a person from different facial modalities such as visible and near-infrared images. The main challenges of HFR lie in the large modality discrepancy and insufficient training samples. In this paper, we propose the Mutual Component Convolutional Neural Network (MC-CNN), a modal-invariant deep learning framework, to tackle these two issues simultaneously. Our MCCNN incorporates a generative module, i.e. the Mutual Component Analysis (MCA) [1], into modern deep convolutional neural networks by viewing MCA as a special fully-connected (FC) layer. Based on deep features, this FC layer is designed to extract modal-independent hidden factors, and is updated according to maximum likelihood analytic formulation instead of back propagation which prevents over-fitting from limited data naturally. In addition, we develop an MCA loss to update the network for modal-invariant feature learning. Extensive experiments show that our MC-CNN outperforms several finetuned baseline models significantly. Our methods achieve the state-of-the-art performance on CASIA NIR-VIS 2.0, CUHK NIR-VIS and IIIT-D Sketch dataset 
650 4 |a Journal Article 
700 1 |a Peng, Xiaojiang  |e verfasserin  |4 aut 
700 1 |a Li, Zhifeng  |e verfasserin  |4 aut 
700 1 |a Qiao, Yu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 23. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2019  |g day:23  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2894272  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 23  |c 01