|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM29304192X |
003 |
DE-627 |
005 |
20231225074440.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.8b03891
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0976.xml
|
035 |
|
|
|a (DE-627)NLM29304192X
|
035 |
|
|
|a (NLM)30676754
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yahata, Yoshikazu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Control of Phase Separation in Polystyrene/Ionic Liquid-Blended Films by Polymer Brush-Grafted Particles
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Immiscible composite materials with controlled phase-separated structures are important in areas ranging from catalysis to battery. We succeeded in controlling the phase-separated structures of immiscible blends of polystyrene (PS) and two ionic liquids (ILs), namely, N, N-diethyl- N-(2-methoxyethyl)- N-methylammonium bis(trifluoromethylsulfonyl)imide (DEME-TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, by adding precisely designed concentrated polymer brush-grafted (CPB-grafted) silica nanoparticles (CPB-SiPs) prepared by surface-initiated atom-transfer radical polymerization. We discuss relationships between chemical species and molecular weights of the CPB and phase-separated structures. When the CPB was composed of a PS homopolymer of an appropriate molecular weight, the IL phase formed a continuous structure and a quasi-solid-blended film was successfully fabricated because the CPB-SiPs were adsorbed at the PS/IL interface and prevented macroscopic phase separation. We propose that CPB-SiP adsorption and the fabrication of quasi-solid films are governed by the degree of penetration of the matrix PS chains into the CPB and deformability of the CPB-SiPs. We found that the DEME-TFSI domain size can be controlled by the CPB-SiP content and that only 1 wt % of the CPB-SiPs was needed to fabricate a quasi-solid film. In addition, we investigated the ionic properties of the quasi-solid PS/DEME-TFSI-blended film. Owing to continuous ion channels composed only of DEME-TFSI, the film exhibited an ionic conductivity of 0.1 mS/cm, which is relatively high compared to previously reported quasi-solid electrolytes. Finally, we demonstrated that an electric double-layer capacitor fabricated using this film as the electrolyte exhibited high charge/discharge cycling stability and reversibility
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kimura, Keiji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nakanishi, Yohei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marukane, Shoko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sato, Takaya
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tsujii, Yoshinobu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ohno, Kohji
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 35(2019), 10 vom: 12. März, Seite 3733-3747
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2019
|g number:10
|g day:12
|g month:03
|g pages:3733-3747
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.8b03891
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2019
|e 10
|b 12
|c 03
|h 3733-3747
|