IPSIM-Web, An Online Resource for Promoting Qualitative Aggregative Hierarchical Network Models to Predict Plant Disease Risk : Application to Brown Rust on Wheat

A qualitative pest modeling platform, named Injury Profile Simulator (IPSIM), provides a tool to design aggregative hierarchical network models to predict the risk of pest injuries, including diseases, on a given crop based on variables related to cropping practices as well as soil and weather envir...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 102(2018), 3 vom: 01. März, Seite 488-499
1. Verfasser: Robin, Marie-Hélène (VerfasserIn)
Weitere Verfasser: Bancal, Marie-Odile, Cellier, Vincent, Délos, Marc, Felix, Irène, Launay, Marie, Magnard, Adèle, Olivier, Axel, Robert, Corinne, Rolland, Bernard, Sache, Ivan, Aubertot, Jean-Noël
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM293009937
003 DE-627
005 20231225074358.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-12-16-1816-SR  |2 doi 
028 5 2 |a pubmed24n0976.xml 
035 |a (DE-627)NLM293009937 
035 |a (NLM)30673480 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Robin, Marie-Hélène  |e verfasserin  |4 aut 
245 1 0 |a IPSIM-Web, An Online Resource for Promoting Qualitative Aggregative Hierarchical Network Models to Predict Plant Disease Risk  |b Application to Brown Rust on Wheat 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.02.2019 
500 |a Date Revised 15.02.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a A qualitative pest modeling platform, named Injury Profile Simulator (IPSIM), provides a tool to design aggregative hierarchical network models to predict the risk of pest injuries, including diseases, on a given crop based on variables related to cropping practices as well as soil and weather environment at the field level. The IPSIM platform enables modelers to combine data from various sources (literature, survey, experiments, and so on), expert knowledge, and simulation to build a network-based model. The overall structure of the platform is fully described at the IPSIM-Web website ( www6.inra.fr/ipsim ). A new module called IPSIM-Wheat-brown rust is reported in this article as an example of how to use the system to build and test the predictive quality of a prediction model. Model performance was evaluated for a dataset comprising 1,788 disease observations at 13 French cereal-growing regions over 15 years. Accuracy of the predictions was 85% and the agreement with actual values was 0.66 based on Cohen's κ. The new model provides risk information for farmers and agronomists to make scientifically sound tactical (within-season) decisions. In addition, the model may be of use for ex post diagnoses of diseases in commercial fields. The limitations of the model such as low precision and threshold effects as well as the benefits, including the integration of different sources of information, transparency, flexibility, and a user-friendly interface, are discussed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bancal, Marie-Odile  |e verfasserin  |4 aut 
700 1 |a Cellier, Vincent  |e verfasserin  |4 aut 
700 1 |a Délos, Marc  |e verfasserin  |4 aut 
700 1 |a Felix, Irène  |e verfasserin  |4 aut 
700 1 |a Launay, Marie  |e verfasserin  |4 aut 
700 1 |a Magnard, Adèle  |e verfasserin  |4 aut 
700 1 |a Olivier, Axel  |e verfasserin  |4 aut 
700 1 |a Robert, Corinne  |e verfasserin  |4 aut 
700 1 |a Rolland, Bernard  |e verfasserin  |4 aut 
700 1 |a Sache, Ivan  |e verfasserin  |4 aut 
700 1 |a Aubertot, Jean-Noël  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 102(2018), 3 vom: 01. März, Seite 488-499  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:102  |g year:2018  |g number:3  |g day:01  |g month:03  |g pages:488-499 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-12-16-1816-SR  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 102  |j 2018  |e 3  |b 01  |c 03  |h 488-499