The Use of Features from Fluorescence, Thermography, and NDVI Imaging to Detect Biotic Stress in Lettuce

Fluorescence, normalized difference vegetation index, and thermal imaging are three frequently used nondestructive methods to detect biotic stress in plants. Due, in part, to the inconsistent results reported in the literature and the lack of measurements on the whole-plant scale, we tested the suit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 102(2018), 6 vom: 01. Juni, Seite 1101-1107
1. Verfasser: Sandmann, Martin (VerfasserIn)
Weitere Verfasser: Grosch, Rita, Graefe, Jan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM293009457
003 DE-627
005 20250224172227.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-10-17-1536-RE  |2 doi 
028 5 2 |a pubmed25n0976.xml 
035 |a (DE-627)NLM293009457 
035 |a (NLM)30673433 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sandmann, Martin  |e verfasserin  |4 aut 
245 1 4 |a The Use of Features from Fluorescence, Thermography, and NDVI Imaging to Detect Biotic Stress in Lettuce 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.02.2019 
500 |a Date Revised 09.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Fluorescence, normalized difference vegetation index, and thermal imaging are three frequently used nondestructive methods to detect biotic stress in plants. Due, in part, to the inconsistent results reported in the literature and the lack of measurements on the whole-plant scale, we tested the suitability of a wide variety of variables obtained using these three imaging methods to classify young plants into biotically stressed and nonstressed plants. To this end, we applied the model plant-pathogen system lettuce-Rhizoctonia solani. The relevant data from each image and plant (healthy and diseased) was extracted semiautomatically using sophisticated image processing algorithms. This method enabled us to identify the most appropriate variables via discriminant function and logistic regression analysis: photosystem II maximum quantum yield (Fv/Fm) and fluorescence decline ratio can be used to classify variables with an error ≤0.052. Lettuce seedlings with an Fv/Fm ratio > 0.73 were consistently healthy. In some cases, it was possible to detect infection prior to the appearance of symptoms. Possibilities to transfer the method to horticultural practice are discussed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Grosch, Rita  |e verfasserin  |4 aut 
700 1 |a Graefe, Jan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 102(2018), 6 vom: 01. Juni, Seite 1101-1107  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:102  |g year:2018  |g number:6  |g day:01  |g month:06  |g pages:1101-1107 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-10-17-1536-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 102  |j 2018  |e 6  |b 01  |c 06  |h 1101-1107