Toward a Better Understanding of Hemiwicking : A Simple Model to Comprehensive Prediction

The hemiwicking state has attracted much interest because of numerous important potential applications in inking, printing, boiling heat transfer, and condensation. However, the mechanism of the emergence of hemiwicking has not been well understood, especially the effects of geometry of patterned su...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 7 vom: 19. Feb., Seite 2854-2864
1. Verfasser: Chen, Huadong (VerfasserIn)
Weitere Verfasser: Zang, Hang, Li, Xinlei, Zhao, Yanping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The hemiwicking state has attracted much interest because of numerous important potential applications in inking, printing, boiling heat transfer, and condensation. However, the mechanism of the emergence of hemiwicking has not been well understood, especially the effects of geometry of patterned surfaces on the hemiwicking state has not been systematically investigated. Here, we presented a new method to study the critical conditions for hemiwicking on patterned surfaces. By minimizing the variation of the free energy, we obtain the corresponding stable height of the hemiwicking film and find that it is easier for a droplet to be in the hemiwicking state if the pillar surface has small spacing, large radius and height, and a small intrinsic contact angle. Our established model is applied to a flat-topped cylindrical pillar-patterned surface, and the modeling results are in well agreement with experiments and other existing theories. Besides, our model is also applied to other kinds of patterned surfaces including hemispherical-topped cylindrical and conical pillars, about which the other existing theories are deficient. Our theoretical results not only are in well agreement with the experimental observations but also provide some important predictions, which implies that the established model could be applicable to understanding the basic physical mechanism of the hemiwicking state and be useful in guiding the design and fabrication of hemiwicking surfaces
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b03611