Structured Label Inference for Visual Understanding

Visual data such as images and videos contain a rich source of structured semantic labels as well as a wide range of interacting components. Visual content could be assigned with fine-grained labels describing major components, coarse-grained labels depicting high level abstractions, or a set of lab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 5 vom: 17. Mai, Seite 1257-1271
1. Verfasser: Nauata, Nelson (VerfasserIn)
Weitere Verfasser: Hu, Hexiang, Zhou, Guang-Tong, Deng, Zhiwei, Liao, Zicheng, Mori, Greg
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292961081
003 DE-627
005 20231225074254.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2893215  |2 doi 
028 5 2 |a pubmed24n0976.xml 
035 |a (DE-627)NLM292961081 
035 |a (NLM)30668494 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nauata, Nelson  |e verfasserin  |4 aut 
245 1 0 |a Structured Label Inference for Visual Understanding 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.09.2020 
500 |a Date Revised 03.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual data such as images and videos contain a rich source of structured semantic labels as well as a wide range of interacting components. Visual content could be assigned with fine-grained labels describing major components, coarse-grained labels depicting high level abstractions, or a set of labels revealing attributes. Such categorization over different, interacting layers of labels evinces the potential for a graph-based encoding of label information. In this paper, we exploit this rich structure for performing graph-based inference in label space for a number of tasks: multi-label image and video classification and action detection in untrimmed videos. We consider the use of the Bidirectional Inference Neural Network (BINN) and Structured Inference Neural Network (SINN) for performing graph-based inference in label space and propose a Long Short-Term Memory (LSTM) based extension for exploiting activity progression on untrimmed videos. The methods were evaluated on (i) the Animal with Attributes (AwA), Scene Understanding (SUN) and NUS-WIDE datasets for multi-label image classification, (ii) the first two releases of the YouTube-8M large scale dataset for multi-label video classification, and (iii) the THUMOS'14 and MultiTHUMOS video datasets for action detection. Our results demonstrate the effectiveness of structured label inference in these challenging tasks, achieving significant improvements against baselines 
650 4 |a Journal Article 
700 1 |a Hu, Hexiang  |e verfasserin  |4 aut 
700 1 |a Zhou, Guang-Tong  |e verfasserin  |4 aut 
700 1 |a Deng, Zhiwei  |e verfasserin  |4 aut 
700 1 |a Liao, Zicheng  |e verfasserin  |4 aut 
700 1 |a Mori, Greg  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 5 vom: 17. Mai, Seite 1257-1271  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:5  |g day:17  |g month:05  |g pages:1257-1271 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2893215  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 5  |b 17  |c 05  |h 1257-1271