Heterogeneous Recommendation via Deep Low-Rank Sparse Collective Factorization

A real-world recommender usually adopts heterogeneous types of user feedbacks, for example, numerical ratings such as 5-star grades and binary ratings such as likes and dislikes. In this work, we focus on transferring knowledge from binary ratings to numerical ratings, facing a more serious data spa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 5 vom: 01. Mai, Seite 1097-1111
1. Verfasser: Jiang, Shuhui (VerfasserIn)
Weitere Verfasser: Ding, Zhengming, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292960808
003 DE-627
005 20231225074253.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2894137  |2 doi 
028 5 2 |a pubmed24n0976.xml 
035 |a (DE-627)NLM292960808 
035 |a (NLM)30668466 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Shuhui  |e verfasserin  |4 aut 
245 1 0 |a Heterogeneous Recommendation via Deep Low-Rank Sparse Collective Factorization 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A real-world recommender usually adopts heterogeneous types of user feedbacks, for example, numerical ratings such as 5-star grades and binary ratings such as likes and dislikes. In this work, we focus on transferring knowledge from binary ratings to numerical ratings, facing a more serious data sparsity problem. Conventional Collective Factorization methods usually assume that there are shared user and item latent factors across multiple related domains, but may ignore the shared common knowledge of rating patterns. Furthermore, existing works may also fail to consider the hierarchical structures in the heterogeneous recommendation scenario (i.e., genre, sub-genre, detailed-category). To address these challenges, in this paper, we propose a novel Deep Low-rank Sparse Collective Factorization (DLSCF) framework for heterogeneous recommendation. Specifically, we adopt low-rank sparse decomposition to capture the common rating patterns in related domains while splitting the domain-specific patterns. We also factorize the model in multiple layers to capture the affiliation relation between latent categories and sub-categories. We propose both batch and Stochastic Gradient Descent (SGD) based optimization algorithms for solving DLSCF. Experimental results on MoviePilot, Netfilx, Flixter, MovieLens10M and MovieLens20M datasets demonstrate the effectiveness of the proposed algorithms, by comparing them with several state-of-the-art batch and SGD based approaches 
650 4 |a Journal Article 
700 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 5 vom: 01. Mai, Seite 1097-1111  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:5  |g day:01  |g month:05  |g pages:1097-1111 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2894137  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 5  |b 01  |c 05  |h 1097-1111