RefineNet : Multi-Path Refinement Networks for Dense Prediction

Recently, very deep convolutional neural networks (CNNs) have shown outstanding performance in object recognition and have also been the first choice for dense prediction problems such as semantic segmentation and depth estimation. However, repeated subsampling operations like pooling or convolution...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 5 vom: 01. Mai, Seite 1228-1242
1. Verfasser: Lin, Guosheng (VerfasserIn)
Weitere Verfasser: Liu, Fayao, Milan, Anton, Shen, Chunhua, Reid, Ian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM292960727
003 DE-627
005 20231225074253.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2893630  |2 doi 
028 5 2 |a pubmed24n0976.xml 
035 |a (DE-627)NLM292960727 
035 |a (NLM)30668461 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Guosheng  |e verfasserin  |4 aut 
245 1 0 |a RefineNet  |b Multi-Path Refinement Networks for Dense Prediction 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.09.2020 
500 |a Date Revised 03.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, very deep convolutional neural networks (CNNs) have shown outstanding performance in object recognition and have also been the first choice for dense prediction problems such as semantic segmentation and depth estimation. However, repeated subsampling operations like pooling or convolution striding in deep CNNs lead to a significant decrease in the initial image resolution. Here, we present RefineNet, a generic multi-path refinement network that explicitly exploits all the information available along the down-sampling process to enable high-resolution prediction using long-range residual connections. In this way, the deeper layers that capture high-level semantic features can be directly refined using fine-grained features from earlier convolutions. The individual components of RefineNet employ residual connections following the identity mapping mindset, which allows for effective end-to-end training. Further, we introduce chained residual pooling, which captures rich background context in an efficient manner. We carry out comprehensive experiments on semantic segmentation which is a dense classification problem and achieve good performance on seven public datasets. We further apply our method for depth estimation and demonstrate the effectiveness of our method on dense regression problems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Fayao  |e verfasserin  |4 aut 
700 1 |a Milan, Anton  |e verfasserin  |4 aut 
700 1 |a Shen, Chunhua  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 5 vom: 01. Mai, Seite 1228-1242  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:5  |g day:01  |g month:05  |g pages:1228-1242 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2893630  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 5  |b 01  |c 05  |h 1228-1242