The Agrobacterium VirD5 protein hyperactivates the mitotic Aurora kinase in host cells

© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 222(2019), 3 vom: 03. Mai, Seite 1551-1560
1. Verfasser: Zhang, Xiaorong (VerfasserIn)
Weitere Verfasser: Hooykaas, Paul J J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Agrobacterium tumefaciens Aurora kinase kinetochore mitosis virulence Bacterial Proteins Saccharomyces cerevisiae Proteins Aurora Kinases mehr... EC 2.7.11.1 IPL1 protein, S cerevisiae
Beschreibung
Zusammenfassung:© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Aided by translocated virulence proteins, Agrobacterium tumefaciens transforms plant cells with oncogenic T-DNA. In the host cells the virulence protein VirD5 moves to the nucleus, where it becomes localized at the kinetochores, and disturbs faithful chromosome segregation, but the molecular mechanism underlying this remains unknown. To gain more insight, we screened amongst the kinetochore proteins for VirD5 interactors using bimolecular fluorescence complementation assays, and tested chromosome segregation in yeast cells. We found that VirD5 interacts with the conserved mitotic Aurora kinase Ipl1 in yeast and likewise with plant Aurora kinases. In vitro VirD5 was found to stimulate the activity of Ipl1. Phosphorylation of substrates by Ipl1 in vivo is known to result in the detachment between kinetochore and spindle microtubule. This is necessary for error correction, but increased Ipl1/Aurora kinase activity is known to cause spindle instability, explaining enhanced chromosome mis-segregation seen in the presence of VirD5. That activation of the Ipl1/Aurora kinase at least partially underlies the toxicity of VirD5 became apparent by artificial boosting the activity of the specific counteracting phosphatase Glc7 in vivo, which relieved the toxicity. These findings reveal a novel mechanism by which a pathogenic bacterium manipulates host cells
Beschreibung:Date Completed 27.02.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15700