|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM292908520 |
003 |
DE-627 |
005 |
20240331232040.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201806899
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1358.xml
|
035 |
|
|
|a (DE-627)NLM292908520
|
035 |
|
|
|a (NLM)30663123
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Meng, Fanben
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.11.2019
|
500 |
|
|
|a Date Revised 31.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof-of-concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D printing
|
650 |
|
4 |
|a bioprinting
|
650 |
|
4 |
|a cell migration
|
650 |
|
4 |
|a drug screening
|
650 |
|
4 |
|a metastatic cancer model
|
650 |
|
4 |
|a tumor microenvironment
|
700 |
1 |
|
|a Meyer, Carolyn M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Joung, Daeha
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vallera, Daniel A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McAlpine, Michael C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Panoskaltsis-Mortari, Angela
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 10 vom: 01. März, Seite e1806899
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:10
|g day:01
|g month:03
|g pages:e1806899
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201806899
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 10
|b 01
|c 03
|h e1806899
|