Turbulence and interphase mass diffusion assumptions on the performance of secondary settling tanks

© 2018 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 91(2019), 2 vom: 01. Feb., Seite 101-110
1. Verfasser: Gao, Haiwen (VerfasserIn)
Weitere Verfasser: Stenstrom, Michael K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Realizable k-ε model buoyancy effects computational fluid dynamics modeling secondary settling tank turbulent Schmidt number Sewage
LEADER 01000naa a22002652 4500
001 NLM292874766
003 DE-627
005 20231225074101.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.1003  |2 doi 
028 5 2 |a pubmed24n0976.xml 
035 |a (DE-627)NLM292874766 
035 |a (NLM)30659737 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Haiwen  |e verfasserin  |4 aut 
245 1 0 |a Turbulence and interphase mass diffusion assumptions on the performance of secondary settling tanks 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.06.2019 
500 |a Date Revised 24.06.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 Water Environment Federation. 
520 |a Secondary settling tanks (SSTs), also known as secondary sedimentation tanks or secondary clarifiers, are a basic yet complicated process in a biological water resource recovery facility. In order to understand and improve SST performance, computational fluid dynamics methods have been employed over the last 30 years. In the present investigation, a Fluent-based two-dimensional axisymmetric numerical model is applied to understand the effects of the buoyancy term (Gb ) in the turbulent kinetic energy (TKE) equation and two model parameters (the coefficient of buoyancy term (C3 ) in the turbulent dissipation rate equation and the turbulent Schmidt number (σc ) in the sludge transport equation) on the performance of an SST. The results show that the hydrodynamics can only be correctly predicted by buoyancy-coupled TKE equation, unless the mixed liquor suspended solids is low and sludge settling velocity is extremely high. When the field observations show the SST is operating well, the buoyancy-decoupled TKE equation predicts the correct result, but the buoyancy-decoupled TKE equation may predict failure. Care is required in selecting the correct modeling technique for various conditions. This study provides guidance on how to avoid modeling problems and increase rates of convergence. PRACTITIONER POINTS: C3 can be set to zero to improve rate of convergence and reduce computing time. σc can be used to adjust SBH, when ESS and RAS concentrations are well calibrated to the field data, but the SBH does not fit field observation 
650 4 |a Journal Article 
650 4 |a Realizable k-ε model 
650 4 |a buoyancy effects 
650 4 |a computational fluid dynamics modeling 
650 4 |a secondary settling tank 
650 4 |a turbulent Schmidt number 
650 7 |a Sewage  |2 NLM 
700 1 |a Stenstrom, Michael K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 91(2019), 2 vom: 01. Feb., Seite 101-110  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:91  |g year:2019  |g number:2  |g day:01  |g month:02  |g pages:101-110 
856 4 0 |u http://dx.doi.org/10.1002/wer.1003  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 91  |j 2019  |e 2  |b 01  |c 02  |h 101-110