Automated data collection and real-time data analysis suite for serial synchrotron crystallography
open access.
Veröffentlicht in: | Journal of synchrotron radiation. - 1994. - 26(2019), Pt 1 vom: 01. Jan., Seite 244-252 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Journal of synchrotron radiation |
Schlagworte: | Journal Article data acquisition data merging online data analysis protein crystallography serial synchrotron crystallography |
Zusammenfassung: | open access. At the Swiss Light Source macromolecular crystallography (MX) beamlines the collection of serial synchrotron crystallography (SSX) diffraction data is facilitated by the recent DA+ data acquisition and analysis software developments. The SSX suite allows easy, efficient and high-throughput measurements on a large number of crystals. The fast continuous diffraction-based two-dimensional grid scan method allows initial location of microcrystals. The CY+ GUI utility enables efficient assessment of a grid scan's analysis output and subsequent collection of multiple wedges of data (so-called minisets) from automatically selected positions in a serial and automated way. The automated data processing (adp) routines adapted to the SSX data collection mode provide near real time analysis for data in both CBF and HDF5 formats. The automatic data merging (adm) is the latest extension of the DA+ data analysis software routines. It utilizes the sxdm (SSX data merging) package, which provides automatic online scaling and merging of minisets and allows identification of a minisets subset resulting in the best quality of the final merged data. The results of both adp and adm are sent to the MX MongoDB database and displayed in the web-based tracker, which provides the user with on-the-fly feedback about the experiment |
---|---|
Beschreibung: | Date Completed 30.01.2019 Date Revised 07.06.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1600-5775 |
DOI: | 10.1107/S1600577518016570 |