Molecular Dynamics Simulation of Heat Transport through Solid-Liquid Interface during Argon Droplet Evaporation on Heated Substrates

This paper presents a series of molecular dynamics simulations of the evaporating process of an argon droplet on heated substrates and the energy transport mechanism through the solid-liquid interface. Results indicate that the mass density through the liquid-vapor interface decreases sharply when t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 6 vom: 12. Feb., Seite 2164-2171
1. Verfasser: Yu, Jia-Jia (VerfasserIn)
Weitere Verfasser: Tang, Rui, Li, You-Rong, Zhang, Li, Wu, Chun-Mei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292807503
003 DE-627
005 20231225073931.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.8b04047  |2 doi 
028 5 2 |a pubmed24n0976.xml 
035 |a (DE-627)NLM292807503 
035 |a (NLM)30652879 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Jia-Jia  |e verfasserin  |4 aut 
245 1 0 |a Molecular Dynamics Simulation of Heat Transport through Solid-Liquid Interface during Argon Droplet Evaporation on Heated Substrates 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a series of molecular dynamics simulations of the evaporating process of an argon droplet on heated substrates and the energy transport mechanism through the solid-liquid interface. Results indicate that the mass density through the liquid-vapor interface decreases sharply when the evaporation is in the steady state. Meanwhile, there is an adsorption layer in the form of clusters at the solid-liquid interface, which has a higher mass density than the droplet inside. Furthermore, the wetting property of the solid substrate is related to the system's initial temperature and the solid-liquid potential energy parameter. The contact angle decreases with the increase of initial temperature and solid-liquid potential energy parameter. During the accelerated evaporation process, small part of energy transports into the liquid in the perpendicular direction to the solid-liquid interface and most of the energy transports along the parallel direction to the solid-liquid interface in the adsorption layer to the three-phase contact line. The heat-transfer process from the solid substrate to the droplet inside is hindered by the Kapitza resistance at the solid-liquid interface, no matter the solid substrate is hydrophilic or hydrophobic. Meanwhile, the Kapitza resistance gradually increases with the increase of the initial temperature and decreases with the increase of the solid-liquid energy parameter 
650 4 |a Journal Article 
700 1 |a Tang, Rui  |e verfasserin  |4 aut 
700 1 |a Li, You-Rong  |e verfasserin  |4 aut 
700 1 |a Zhang, Li  |e verfasserin  |4 aut 
700 1 |a Wu, Chun-Mei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 35(2019), 6 vom: 12. Feb., Seite 2164-2171  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:35  |g year:2019  |g number:6  |g day:12  |g month:02  |g pages:2164-2171 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.8b04047  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 35  |j 2019  |e 6  |b 12  |c 02  |h 2164-2171