Discrete Hashing with Multiple Supervision

Supervised hashing methods have achieved more promising results than unsupervised ones by leveraging label information to generate compact and accurate hash codes. Most of the prior supervised hashing methods construct an n × n instance-pairwise similarity matrix, where n is the number of training s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 11. Jan.
1. Verfasser: Luo, Xin (VerfasserIn)
Weitere Verfasser: Zhang, Peng-Fei, Huang, Zi, Nie, Liqiang, Xu, Xin-Shun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM292687338
003 DE-627
005 20240229162114.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2892703  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM292687338 
035 |a (NLM)30640611 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Xin  |e verfasserin  |4 aut 
245 1 0 |a Discrete Hashing with Multiple Supervision 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Supervised hashing methods have achieved more promising results than unsupervised ones by leveraging label information to generate compact and accurate hash codes. Most of the prior supervised hashing methods construct an n × n instance-pairwise similarity matrix, where n is the number of training samples. Nevertheless, this kind of similarity matrix results in high memory space cost and makes the optimization time-consuming, which make it unacceptable in many real applications. In addition, most of the methods relax the discrete constraints to solve the optimization problem, which may cause large quantization errors and finally leads to poor performance. To address these limitations, in this paper, we present a novel hashing method, named Discrete Hashing with Multiple Supervision (MSDH). MSDH supervises the hash code learning with both class-wise and instance-class similarity matrices, whose space cost is much less than the instance-pairwise similarity matrix. With multiple supervision information, better hash codes can be learnt. Besides, an iterative optimization algorithm is proposed to directly learn the discrete hash codes instead of relaxing the binary constraints. Experimental results on several widely-used benchmark datasets demonstrate that MSDH outperforms some state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Zhang, Peng-Fei  |e verfasserin  |4 aut 
700 1 |a Huang, Zi  |e verfasserin  |4 aut 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
700 1 |a Xu, Xin-Shun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 11. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:11  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2892703  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 11  |c 01