Multiple Kernel k-Means with Incomplete Kernels

Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base kernel matrices to improve clustering performance. However, existing MKC algorithms cannot efficiently address the situation where some rows and columns of base kernel matrices are absent. This paper proposes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 5 vom: 14. Mai, Seite 1191-1204
1. Verfasser: Liu, Xinwang (VerfasserIn)
Weitere Verfasser: Zhu, Xinzhong, Li, Miaomiao, Wang, Lei, Zhu, En, Liu, Tongliang, Kloft, Marius, Shen, Dinggang, Yin, Jianping, Gao, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292687222
003 DE-627
005 20231225073650.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2892416  |2 doi 
028 5 2 |a pubmed24n0975.xml 
035 |a (DE-627)NLM292687222 
035 |a (NLM)30640600 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
245 1 0 |a Multiple Kernel k-Means with Incomplete Kernels 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base kernel matrices to improve clustering performance. However, existing MKC algorithms cannot efficiently address the situation where some rows and columns of base kernel matrices are absent. This paper proposes two simple yet effective algorithms to address this issue. Different from existing approaches where incomplete kernel matrices are first imputed and a standard MKC algorithm is applied to the imputed kernel matrices, our first algorithm integrates imputation and clustering into a unified learning procedure. Specifically, we perform multiple kernel clustering directly with the presence of incomplete kernel matrices, which are treated as auxiliary variables to be jointly optimized. Our algorithm does not require that there be at least one complete base kernel matrix over all the samples. Also, it adaptively imputes incomplete kernel matrices and combines them to best serve clustering. Moreover, we further improve this algorithm by encouraging these incomplete kernel matrices to mutually complete each other. The three-step iterative algorithm is designed to solve the resultant optimization problems. After that, we theoretically study the generalization bound of the proposed algorithms. Extensive experiments are conducted on 13 benchmark data sets to compare the proposed algorithms with existing imputation-based methods. Our algorithms consistently achieve superior performance and the improvement becomes more significant with increasing missing ratio, verifying the effectiveness and advantages of the proposed joint imputation and clustering 
650 4 |a Journal Article 
700 1 |a Zhu, Xinzhong  |e verfasserin  |4 aut 
700 1 |a Li, Miaomiao  |e verfasserin  |4 aut 
700 1 |a Wang, Lei  |e verfasserin  |4 aut 
700 1 |a Zhu, En  |e verfasserin  |4 aut 
700 1 |a Liu, Tongliang  |e verfasserin  |4 aut 
700 1 |a Kloft, Marius  |e verfasserin  |4 aut 
700 1 |a Shen, Dinggang  |e verfasserin  |4 aut 
700 1 |a Yin, Jianping  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 5 vom: 14. Mai, Seite 1191-1204  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:5  |g day:14  |g month:05  |g pages:1191-1204 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2892416  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 5  |b 14  |c 05  |h 1191-1204