Online Meta Adaptation for Fast Video Object Segmentation

Conventional deep neural networks based video object segmentation (VOS) methods are dominated by heavily fine-tuning a segmentation model on the first frame of a given video, which is time-consuming and inefficient. In this paper, we propose a novel method which rapidly adapts a base segmentation mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 5 vom: 14. Mai, Seite 1205-1217
1. Verfasser: Xiao, Huaxin (VerfasserIn)
Weitere Verfasser: Kang, Bingyi, Liu, Yu, Zhang, Maojun, Feng, Jiashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292687184
003 DE-627
005 20231225073650.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2890659  |2 doi 
028 5 2 |a pubmed24n0975.xml 
035 |a (DE-627)NLM292687184 
035 |a (NLM)30640597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Huaxin  |e verfasserin  |4 aut 
245 1 0 |a Online Meta Adaptation for Fast Video Object Segmentation 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Conventional deep neural networks based video object segmentation (VOS) methods are dominated by heavily fine-tuning a segmentation model on the first frame of a given video, which is time-consuming and inefficient. In this paper, we propose a novel method which rapidly adapts a base segmentation model to new video sequences with only a couple of model-update iterations, without sacrificing performance. Such attractive efficiency benefits from the meta-learning paradigm which leads to a meta-segmentation model and a novel continuous learning approach which enables online adaptation of the segmentation model. Concretely, we train a meta-learner on multiple VOS tasks such that the meta model can capture their common knowledge and gains the ability to fast adapt the segmentation model to new video sequences. Furthermore, to deal with unique challenges of VOS tasks from temporal variations in the video, e.g., object motion and appearance changes, we propose a principled online adaptation approach that continuously adapts the segmentation model across video frames by exploiting temporal context effectively, providing robustness to annoying temporal variations. Integrating the meta-learner with the online adaptation approach, the proposed VOS model achieves competitive performance against the state-of-the-arts and moreover provides faster per-frame processing speed 
650 4 |a Journal Article 
700 1 |a Kang, Bingyi  |e verfasserin  |4 aut 
700 1 |a Liu, Yu  |e verfasserin  |4 aut 
700 1 |a Zhang, Maojun  |e verfasserin  |4 aut 
700 1 |a Feng, Jiashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 5 vom: 14. Mai, Seite 1205-1217  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:5  |g day:14  |g month:05  |g pages:1205-1217 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2890659  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 5  |b 14  |c 05  |h 1205-1217