Progressive Learning for Person Re-Identification with One Example

In this paper, we focus on the one-example person re-identification (re-ID) task, where each identity has only one labeled example along with many unlabeled examples. We propose a progressive framework which gradually exploits the unlabeled data for person re-ID. In this framework, we iteratively (1...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 10. Jan.
1. Verfasser: Wu, Yu (VerfasserIn)
Weitere Verfasser: Lin, Yutian, Dong, Xuanyi, Yan, Yan, Bian, Wei, Yang, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM292578245
003 DE-627
005 20240229162111.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2891895  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM292578245 
035 |a (NLM)30629502 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yu  |e verfasserin  |4 aut 
245 1 0 |a Progressive Learning for Person Re-Identification with One Example 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In this paper, we focus on the one-example person re-identification (re-ID) task, where each identity has only one labeled example along with many unlabeled examples. We propose a progressive framework which gradually exploits the unlabeled data for person re-ID. In this framework, we iteratively (1) update the Convolutional Neural Network (CNN) model and (2) estimate pseudo labels for the unlabeled data. We split the training data into three parts, i.e., labeled data, pseudo-labeled data, and indexlabeled data. Initially, the re-ID model is trained using the labeled data. For the subsequent model training, we update the CNN model by the joint training on the three data parts. The proposed joint training method can optimize the model by both the data with labels (or pseudo labels) and the data without any reliable labels. For the label estimation step, instead of using a static sampling strategy, we propose a progressive sampling strategy to increase the number of the selected pseudo-labeled candidates step by step. We select a few candidates with most reliable pseudo labels from unlabeled examples as the pseudo-labeled data, and keep the rest as index-labeled data by assigning them with the data indexes. During iterations, the index-labeled data are dynamically transferred to pseudo-labeled data. Notably, the rank-1 accuracy of our method outperforms the state-of-the-art method by 21.6 points (absolute, i.e., 62.8% vs. 41.2%) on MARS, and 16.6 points on DukeMTMC-VideoReID. Extended to the few-example setting, our approach with only 20% labeled data surprisingly achieves comparable performance to the supervised state-of-the-art method with 100% labeled data 
650 4 |a Journal Article 
700 1 |a Lin, Yutian  |e verfasserin  |4 aut 
700 1 |a Dong, Xuanyi  |e verfasserin  |4 aut 
700 1 |a Yan, Yan  |e verfasserin  |4 aut 
700 1 |a Bian, Wei  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 10. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:10  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2891895  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 10  |c 01