Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm
In this paper, we consider the Tensor Robust Principal Component Analysis (TRPCA) problem, which aims to exactly recover the low-rank and sparse components from their sum. Our model is based on the recently proposed tensor-tensor product (or t-product) [14]. Induced by the t-product, we first rigoro...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 4 vom: 10. Apr., Seite 925-938
|
| Auteur principal: |
Lu, Canyi
(Auteur) |
| Autres auteurs: |
Feng, Jiashi,
Chen, Yudong,
Liu, Wei,
Lin, Zhouchen,
Yan, Shuicheng |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2020
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
| Sujets: | Journal Article |