Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm

In this paper, we consider the Tensor Robust Principal Component Analysis (TRPCA) problem, which aims to exactly recover the low-rank and sparse components from their sum. Our model is based on the recently proposed tensor-tensor product (or t-product) [14]. Induced by the t-product, we first rigoro...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 4 vom: 10. Apr., Seite 925-938
Auteur principal: Lu, Canyi (Auteur)
Autres auteurs: Feng, Jiashi, Chen, Yudong, Liu, Wei, Lin, Zhouchen, Yan, Shuicheng
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article