A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing

Most of existing traffic simulation methods have been focused on simulating vehicles on freeways or city-scale urban networks. However, relatively little research has been done to simulate intersectional traffic to date despite its broad potential applications. In this paper, we propose a novel deep...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 7 vom: 03. Juli, Seite 2335-2348
1. Verfasser: Bi, Huikun (VerfasserIn)
Weitere Verfasser: Mao, Tianlu, Wang, Zhaoqi, Deng, Zhigang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292337957
003 DE-627
005 20231225072856.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2889834  |2 doi 
028 5 2 |a pubmed24n0974.xml 
035 |a (DE-627)NLM292337957 
035 |a (NLM)30605102 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bi, Huikun  |e verfasserin  |4 aut 
245 1 2 |a A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.06.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most of existing traffic simulation methods have been focused on simulating vehicles on freeways or city-scale urban networks. However, relatively little research has been done to simulate intersectional traffic to date despite its broad potential applications. In this paper, we propose a novel deep learning-based framework to simulate and edit intersectional traffic. Specifically, based on an in-house collected intersectional traffic dataset, we employ the combination of convolution network (CNN) and recurrent network (RNN) to learn the patterns of vehicle trajectories in intersectional traffic. Besides simulating novel intersectional traffic, our method can be used to edit existing intersectional traffic. Through many experiments as well as comparative user studies, we demonstrate that the results by our method are visually indistinguishable from ground truth, and our method can outperform existing methods 
650 4 |a Journal Article 
700 1 |a Mao, Tianlu  |e verfasserin  |4 aut 
700 1 |a Wang, Zhaoqi  |e verfasserin  |4 aut 
700 1 |a Deng, Zhigang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 7 vom: 03. Juli, Seite 2335-2348  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:7  |g day:03  |g month:07  |g pages:2335-2348 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2889834  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 7  |b 03  |c 07  |h 2335-2348