LEADER 01000naa a22002652 4500
001 NLM292265506
003 DE-627
005 20231225072720.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.15668  |2 doi 
028 5 2 |a pubmed24n0974.xml 
035 |a (DE-627)NLM292265506 
035 |a (NLM)30597597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kumarathunge, Dushan P  |e verfasserin  |4 aut 
245 1 0 |a Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.02.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. 
520 |a The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Jmax 
650 4 |a Vcmax 
650 4 |a ACi curves 
650 4 |a climate of origin 
650 4 |a global vegetation models (GVMs) 
650 4 |a growth temperature 
650 4 |a maximum carboxylation capacity 
650 4 |a maximum electron transport rate 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Ribulose-Bisphosphate Carboxylase  |2 NLM 
650 7 |a EC 4.1.1.39  |2 NLM 
700 1 |a Medlyn, Belinda E  |e verfasserin  |4 aut 
700 1 |a Drake, John E  |e verfasserin  |4 aut 
700 1 |a Tjoelker, Mark G  |e verfasserin  |4 aut 
700 1 |a Aspinwall, Michael J  |e verfasserin  |4 aut 
700 1 |a Battaglia, Michael  |e verfasserin  |4 aut 
700 1 |a Cano, Francisco J  |e verfasserin  |4 aut 
700 1 |a Carter, Kelsey R  |e verfasserin  |4 aut 
700 1 |a Cavaleri, Molly A  |e verfasserin  |4 aut 
700 1 |a Cernusak, Lucas A  |e verfasserin  |4 aut 
700 1 |a Chambers, Jeffrey Q  |e verfasserin  |4 aut 
700 1 |a Crous, Kristine Y  |e verfasserin  |4 aut 
700 1 |a De Kauwe, Martin G  |e verfasserin  |4 aut 
700 1 |a Dillaway, Dylan N  |e verfasserin  |4 aut 
700 1 |a Dreyer, Erwin  |e verfasserin  |4 aut 
700 1 |a Ellsworth, David S  |e verfasserin  |4 aut 
700 1 |a Ghannoum, Oula  |e verfasserin  |4 aut 
700 1 |a Han, Qingmin  |e verfasserin  |4 aut 
700 1 |a Hikosaka, Kouki  |e verfasserin  |4 aut 
700 1 |a Jensen, Anna M  |e verfasserin  |4 aut 
700 1 |a Kelly, Jeff W G  |e verfasserin  |4 aut 
700 1 |a Kruger, Eric L  |e verfasserin  |4 aut 
700 1 |a Mercado, Lina M  |e verfasserin  |4 aut 
700 1 |a Onoda, Yusuke  |e verfasserin  |4 aut 
700 1 |a Reich, Peter B  |e verfasserin  |4 aut 
700 1 |a Rogers, Alistair  |e verfasserin  |4 aut 
700 1 |a Slot, Martijn  |e verfasserin  |4 aut 
700 1 |a Smith, Nicholas G  |e verfasserin  |4 aut 
700 1 |a Tarvainen, Lasse  |e verfasserin  |4 aut 
700 1 |a Tissue, David T  |e verfasserin  |4 aut 
700 1 |a Togashi, Henrique F  |e verfasserin  |4 aut 
700 1 |a Tribuzy, Edgard S  |e verfasserin  |4 aut 
700 1 |a Uddling, Johan  |e verfasserin  |4 aut 
700 1 |a Vårhammar, Angelica  |e verfasserin  |4 aut 
700 1 |a Wallin, Göran  |e verfasserin  |4 aut 
700 1 |a Warren, Jeffrey M  |e verfasserin  |4 aut 
700 1 |a Way, Danielle A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 222(2019), 2 vom: 31. Apr., Seite 768-784  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:222  |g year:2019  |g number:2  |g day:31  |g month:04  |g pages:768-784 
856 4 0 |u http://dx.doi.org/10.1111/nph.15668  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 222  |j 2019  |e 2  |b 31  |c 04  |h 768-784