Deep Self-Evolution Clustering

Clustering is a crucial but challenging task in pattern analysis and machine learning. Existing methods often ignore the combination between representation learning and clustering. To tackle this problem, we reconsider the clustering task from its definition to develop Deep Self-Evolution Clustering...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 4 vom: 01. Apr., Seite 809-823
1. Verfasser: Chang, Jianlong (VerfasserIn)
Weitere Verfasser: Meng, Gaofeng, Wang, Lingfeng, Xiang, Shiming, Pan, Chunhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292256698
003 DE-627
005 20231225072709.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2889949  |2 doi 
028 5 2 |a pubmed24n0974.xml 
035 |a (DE-627)NLM292256698 
035 |a (NLM)30596571 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Jianlong  |e verfasserin  |4 aut 
245 1 0 |a Deep Self-Evolution Clustering 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Clustering is a crucial but challenging task in pattern analysis and machine learning. Existing methods often ignore the combination between representation learning and clustering. To tackle this problem, we reconsider the clustering task from its definition to develop Deep Self-Evolution Clustering (DSEC) to jointly learn representations and cluster data. For this purpose, the clustering task is recast as a binary pairwise-classification problem to estimate whether pairwise patterns are similar. Specifically, similarities between pairwise patterns are defined by the dot product between indicator features which are generated by a deep neural network (DNN). To learn informative representations for clustering, clustering constraints are imposed on the indicator features to represent specific concepts with specific representations. Since the ground-truth similarities are unavailable in clustering, an alternating iterative algorithm called Self-Evolution Clustering Training (SECT) is presented to select similar and dissimilar pairwise patterns and to train the DNN alternately. Consequently, the indicator features tend to be one-hot vectors and the patterns can be clustered by locating the largest response of the learned indicator features. Extensive experiments strongly evidence that DSEC outperforms current models on twelve popular image, text and audio datasets consistently 
650 4 |a Journal Article 
700 1 |a Meng, Gaofeng  |e verfasserin  |4 aut 
700 1 |a Wang, Lingfeng  |e verfasserin  |4 aut 
700 1 |a Xiang, Shiming  |e verfasserin  |4 aut 
700 1 |a Pan, Chunhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 4 vom: 01. Apr., Seite 809-823  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:4  |g day:01  |g month:04  |g pages:809-823 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2889949  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 4  |b 01  |c 04  |h 809-823