Large-Area Synthesis of Layered HfS2(1- x )Se2 x Alloys with Fully Tunable Chemical Compositions and Bandgaps

© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 44 vom: 30. Nov., Seite e1803285
1. Verfasser: Wang, Denggui (VerfasserIn)
Weitere Verfasser: Zhang, Xingwang, Guo, Gencai, Gao, Shihan, Li, Xingxing, Meng, Junhua, Yin, Zhigang, Liu, Heng, Gao, Menglei, Cheng, Likun, You, Jingbi, Wang, Ruzhi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article HfSe2 alloying chemical vapor deposition photodetectors transition metal dichalcogenides
Beschreibung
Zusammenfassung:© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Alloying transition metal dichalcogenides (TMDs) with different compositions is demonstrated as an effective way to acquire 2D semiconductors with widely tunable bandgaps. Herein, for the first time, the large-area synthesis of layered HfS2(1- x )Se2 x alloys with fully tunable chemical compositions on sapphire by chemical vapor deposition is reported, greatly expanding and enriching the family of 2D TMDs semiconductors. The configuration and high quality of their crystal structure are confirmed by various characterization techniques, and the bandgap of these alloys can be continually modulated from 2.64 to 1.94 eV with composition variations. Furthermore, prototype HfS2(1- x )Se2 x photodetectors with different Se compositions are fabricated, and the HfSe2 photodetector manifests the best performance among all the tested HfS2(1- x )Se2 x devices. Remarkably, by introducing a hexagonal boron nitride layer, the performance of the HfSe2 photodetector is greatly improved, exhibiting a high on/off ratio exceeding 105, an ultrafast response time of about 190 µs, and a high detectivity of 1012 Jones. This simple and controllable approach opens up a new way to produce high-quality 2D HfS2(1- x )Se2 x layers, which are highly qualified candidates for the next-generation application in high-performance optoelectronics
Beschreibung:Date Completed 03.01.2019
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201803285