|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM292148356 |
003 |
DE-627 |
005 |
20231225072440.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.8b03789
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0973.xml
|
035 |
|
|
|a (DE-627)NLM292148356
|
035 |
|
|
|a (NLM)30585494
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sekiyama, Shota
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.11.2019
|
500 |
|
|
|a Date Revised 27.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The labeling technique for cells with over-thousand-nanometer near-infrared (OTN-NIR) fluorescent probes has attracted much attention for in vivo deep imaging for cell tracking and cancer metastasis, because of low scattering and absorption of OTN-NIR light by biological tissues. However, the intracellular behavior following the uptake of the single-walled carbon nanotubes (SWCNTs), an OTN-NIR fluorophore, remains unknown. The aim of this study is to investigate the time-dependent change in OTN-NIR fluorescence images of cultured murine cancer cells (Colon-26) following treatment with a recently developed OTN-NIR fluorescent probe, epoxide-type oxygen-doped SWCNTs (o-SWCNTs). The o-SWCNTs were synthesized by oxygenation of SWCNTs by ozone under ultraviolet irradiation and were dispersed in an aqueous solution of N-(carbonyl-methoxypolyethyleneglycol 2000)-1,2-distearoyl- sn-glycero-3-phosphoethanolamine to prepare biocompatible o-SWCNTs (o-SWCNT-PEG). OTN-NIR fluorescent o-SWCNT-PEG showed an abnormal behavior following cellular uptake. OTN-NIR fluorescence was not observed in the cells after 24 h incubation with the o-SWCNT-PEG, but clearly increased with longer incubation time from three days after the treatment. This result was further confirmed by Raman microscopy, suggesting that OTN-NIR fluorescence intensity was associated with the cellular uptake of the o-SWCNT-PEG. These results suggest that the Colon-26 cells were successfully labeled by the o-SWCNT-PEG that emit OTN-NIR fluorescence. The o-SWCNT-PEG may aggregate in the cells over time, which could favor their internalization. This delayed concentration followed by a long retention of the o-SWCNT-PEG in cells will facilitate further biotechnological applications of the o-SWCNTs to in vivo deep OTN-NIR fluorescent imaging
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Fluorescent Dyes
|2 NLM
|
650 |
|
7 |
|a Nanotubes, Carbon
|2 NLM
|
650 |
|
7 |
|a Polyethylene Glycols
|2 NLM
|
650 |
|
7 |
|a 3WJQ0SDW1A
|2 NLM
|
650 |
|
7 |
|a Ozone
|2 NLM
|
650 |
|
7 |
|a 66H7ZZK23N
|2 NLM
|
650 |
|
7 |
|a Oxygen
|2 NLM
|
650 |
|
7 |
|a S88TT14065
|2 NLM
|
700 |
1 |
|
|a Umezawa, Masakazu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Iizumi, Yoko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ube, Takuji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Okazaki, Toshiya
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kamimura, Masao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Soga, Kohei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 35(2019), 3 vom: 22. Jan., Seite 831-837
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2019
|g number:3
|g day:22
|g month:01
|g pages:831-837
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.8b03789
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2019
|e 3
|b 22
|c 01
|h 831-837
|