Visual Analysis of Collective Anomalies Using Faceted High-Order Correlation Graphs

Successfully detecting, analyzing, and reasoning about collective anomalies is important for many real-life application domains (e.g., intrusion detection, fraud analysis, software security). The primary challenges to achieving this goal include the overwhelming number of low-risk events and their m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 7 vom: 24. Juli, Seite 2517-2534
1. Verfasser: Yan, Jia (VerfasserIn)
Weitere Verfasser: Shi, Lei, Tao, Jun, Yu, Xiaolong, Zhuang, Zhou, Huang, Congcong, Yu, Rulei, Su, Purui, Wang, Chaoli, Chen, Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM292119259
003 DE-627
005 20231225072401.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2889470  |2 doi 
028 5 2 |a pubmed24n0973.xml 
035 |a (DE-627)NLM292119259 
035 |a (NLM)30582546 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Jia  |e verfasserin  |4 aut 
245 1 0 |a Visual Analysis of Collective Anomalies Using Faceted High-Order Correlation Graphs 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.06.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Successfully detecting, analyzing, and reasoning about collective anomalies is important for many real-life application domains (e.g., intrusion detection, fraud analysis, software security). The primary challenges to achieving this goal include the overwhelming number of low-risk events and their multimodal relationships, the diversity of collective anomalies by various data and anomaly types, and the difficulty in incorporating the domain knowledge of experts. In this paper, we propose the novel concept of the faceted High-Order Correlation Graph (HOCG). Compared with previous, low-order correlation graphs, HOCG achieves better user interactivity, computational scalability, and domain generality through synthesizing heterogeneous types of objects, their anomalies, and the multimodal relationships, all in a single graph. We design elaborate visual metaphors, interaction models, and the coordinated multiple view based interface to allow users to fully unleash the visual analytics power of the HOCG. We conduct case studies for three application domains and collect feedback from domain experts who apply our method to these scenarios. The results demonstrate the effectiveness of the HOCG in the overview of point anomalies, the detection of collective anomalies, and the reasoning process of root cause analyses 
650 4 |a Journal Article 
700 1 |a Shi, Lei  |e verfasserin  |4 aut 
700 1 |a Tao, Jun  |e verfasserin  |4 aut 
700 1 |a Yu, Xiaolong  |e verfasserin  |4 aut 
700 1 |a Zhuang, Zhou  |e verfasserin  |4 aut 
700 1 |a Huang, Congcong  |e verfasserin  |4 aut 
700 1 |a Yu, Rulei  |e verfasserin  |4 aut 
700 1 |a Su, Purui  |e verfasserin  |4 aut 
700 1 |a Wang, Chaoli  |e verfasserin  |4 aut 
700 1 |a Chen, Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 7 vom: 24. Juli, Seite 2517-2534  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:7  |g day:24  |g month:07  |g pages:2517-2534 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2889470  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 7  |b 24  |c 07  |h 2517-2534