Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI

Structural magnetic resonance imaging (sMRI) has been widely used for computer-aided diagnosis of neurodegenerative disorders, e.g., Alzheimer's disease (AD), due to its sensitivity to morphological changes caused by brain atrophy. Recently, a few deep learning methods (e.g., convolutional neur...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 4 vom: 24. Apr., Seite 880-893
1. Verfasser: Lian, Chunfeng (VerfasserIn)
Weitere Verfasser: Liu, Mingxia, Zhang, Jun, Shen, Dinggang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural
Beschreibung
Zusammenfassung:Structural magnetic resonance imaging (sMRI) has been widely used for computer-aided diagnosis of neurodegenerative disorders, e.g., Alzheimer's disease (AD), due to its sensitivity to morphological changes caused by brain atrophy. Recently, a few deep learning methods (e.g., convolutional neural networks, CNNs) have been proposed to learn task-oriented features from sMRI for AD diagnosis, and achieved superior performance than the conventional learning-based methods using hand-crafted features. However, these existing CNN-based methods still require the pre-determination of informative locations in sMRI. That is, the stage of discriminative atrophy localization is isolated to the latter stages of feature extraction and classifier construction. In this paper, we propose a hierarchical fully convolutional network (H-FCN) to automatically identify discriminative local patches and regions in the whole brain sMRI, upon which multi-scale feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis. Our proposed H-FCN method was evaluated on a large cohort of subjects from two independent datasets (i.e., ADNI-1 and ADNI-2), demonstrating good performance on joint discriminative atrophy localization and brain disease diagnosis
Beschreibung:Date Completed 14.04.2021
Date Revised 12.10.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2018.2889096