|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM292119054 |
003 |
DE-627 |
005 |
20231225072401.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2018.2889052
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0973.xml
|
035 |
|
|
|a (DE-627)NLM292119054
|
035 |
|
|
|a (NLM)30582526
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Afouras, Triantafyllos
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Deep Audio-Visual Speech Recognition
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 09.11.2022
|
500 |
|
|
|a Date Revised 19.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The goal of this work is to recognise phrases and sentences being spoken by a talking face, with or without the audio. Unlike previous works that have focussed on recognising a limited number of words or phrases, we tackle lip reading as an open-world problem - unconstrained natural language sentences, and in the wild videos. Our key contributions are: (1) we compare two models for lip reading, one using a CTC loss, and the other using a sequence-to-sequence loss. Both models are built on top of the transformer self-attention architecture; (2) we investigate to what extent lip reading is complementary to audio speech recognition, especially when the audio signal is noisy; (3) we introduce and publicly release a new dataset for audio-visual speech recognition, LRS2-BBC, consisting of thousands of natural sentences from British television. The models that we train surpass the performance of all previous work on a lip reading benchmark dataset by a significant margin
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Chung, Joon Son
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Senior, Andrew
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vinyals, Oriol
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zisserman, Andrew
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 12 vom: 24. Dez., Seite 8717-8727
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:12
|g day:24
|g month:12
|g pages:8717-8727
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2018.2889052
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 12
|b 24
|c 12
|h 8717-8727
|