Metal-Organic Framework MIL-101-NH2-Supported Acetate-Based Butylimidazolium Ionic Liquid as a Highly Efficient Heterogeneous Catalyst for the Synthesis of 3-Aryl-2-oxazolidinones

A novel heterogeneous catalyst, the ionic liquid (IL) of 1-butyl-3-methylimidazolium acetate (BmimOAc) immobilized on MIL-101-NH2, denoted as IL(OAc-)-MIL-101-NH2, was prepared by the "ship-in-a-bottle" strategy. The IL of BmimOAc was prepared in the MIL-101-NH2 nanocages primordially, in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 2 vom: 15. Jan., Seite 495-503
1. Verfasser: Chong, S Y (VerfasserIn)
Weitere Verfasser: Wang, T T, Cheng, L C, Lv, H Y, Ji, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:A novel heterogeneous catalyst, the ionic liquid (IL) of 1-butyl-3-methylimidazolium acetate (BmimOAc) immobilized on MIL-101-NH2, denoted as IL(OAc-)-MIL-101-NH2, was prepared by the "ship-in-a-bottle" strategy. The IL of BmimOAc was prepared in the MIL-101-NH2 nanocages primordially, in which the condensation product of MIL-101-NH2's amine group with 1,1'-carbonyldiimidazole (CDI) reacted with 1-bromo butane, and then the intermediate exchanged with potassium acetate. The structure and physicochemical properties of IL(OAc-)-MIL-101-NH2 were characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, DRS UV-vis, nitrogen adsorption-desorption, and elemental analysis. The results indicated that BmimOAc was anchored in the MIL-101-NH2 skeleton via the acylamino group and confined in the nanocages in the form of a single molecule. The composite material of IL(OAc-)-MIL-101-NH2 exhibited excellent catalytic activity and catalytically synthesized 3-aryl-2-oxazolone in an excellent yield of 92%. It can be reused up to six times without noteworthy loss of its activity and demonstrated distinct size-selective property for substrates. It was conjectured that the diffusion kinetics of reactants could be controlled by the aperture size of the metal-organic framework support
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b03153