Event-Based Dynamic Graph Visualisation

Dynamic graph drawing algorithms take as input a series of timeslices that standard, force-directed algorithms can exploit to compute a layout. However, often dynamic graphs are expressed as a series of events where the nodes and edges have real coordinates along the time dimension that are not conf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 7 vom: 19. Juli, Seite 2373-2386
1. Verfasser: Simonetto, Paolo (VerfasserIn)
Weitere Verfasser: Archambault, Daniel, Kobourov, Stephen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Dynamic graph drawing algorithms take as input a series of timeslices that standard, force-directed algorithms can exploit to compute a layout. However, often dynamic graphs are expressed as a series of events where the nodes and edges have real coordinates along the time dimension that are not confined to discrete timeslices. Current techniques for dynamic graph drawing impose a set of timeslices on this event-based data in order to draw the dynamic graph, but it is unclear how many timeslices should be selected: too many timeslices slows the computation of the layout, while too few timeslices obscures important temporal features, such as causality. To address these limitations, we introduce a novel model for drawing event-based dynamic graphs and the first dynamic graph drawing algorithm, DynNoSlice, that is capable of drawing dynamic graphs in this model. DynNoSlice is an offline, force-directed algorithm that draws event-based, dynamic graphs in the space-time cube (2D+time). We also present a method to extract representative small multiples from the space-time cube. To demonstrate the advantages of our approach, DynNoSlice is compared with state-of-the-art timeslicing methods using a metrics-based experiment. Finally, we present case studies of event-based dynamic data visualised with the new model and algorithm
Beschreibung:Date Revised 01.06.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2018.2886901