Deep Neural Network Compression by In-Parallel Pruning-Quantization

Deep neural networks enable state-of-the-art accuracy on visual recognition tasks such as image classification and object detection. However, modern networks contain millions of learned connections, and the current trend is towards deeper and more densely connected architectures. This poses a challe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 3 vom: 18. März, Seite 568-579
1. Verfasser: Tung, Frederick (VerfasserIn)
Weitere Verfasser: Mori, Greg
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM291911099
003 DE-627
005 20231225071923.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2886192  |2 doi 
028 5 2 |a pubmed24n0973.xml 
035 |a (DE-627)NLM291911099 
035 |a (NLM)30561340 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tung, Frederick  |e verfasserin  |4 aut 
245 1 0 |a Deep Neural Network Compression by In-Parallel Pruning-Quantization 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.03.2020 
500 |a Date Revised 09.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep neural networks enable state-of-the-art accuracy on visual recognition tasks such as image classification and object detection. However, modern networks contain millions of learned connections, and the current trend is towards deeper and more densely connected architectures. This poses a challenge to the deployment of state-of-the-art networks on resource-constrained systems, such as smartphones or mobile robots. In general, a more efficient utilization of computation resources would assist in deployment scenarios from embedded platforms to computing clusters running ensembles of networks. In this paper, we propose a deep network compression algorithm that performs weight pruning and quantization jointly, and in parallel with fine-tuning. Our approach takes advantage of the complementary nature of pruning and quantization and recovers from premature pruning errors, which is not possible with two-stage approaches. In experiments on ImageNet, CLIP-Q (Compression Learning by In-Parallel Pruning-Quantization) improves the state-of-the-art in network compression on AlexNet, VGGNet, GoogLeNet, and ResNet. We additionally demonstrate that CLIP-Q is complementary to efficient network architecture design by compressing MobileNet and ShuffleNet, and that CLIP-Q generalizes beyond convolutional networks by compressing a memory network for visual question answering 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Mori, Greg  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 3 vom: 18. März, Seite 568-579  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:3  |g day:18  |g month:03  |g pages:568-579 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2886192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 3  |b 18  |c 03  |h 568-579