The growth impairment of salinized fenugreek (Trigonella foenum-graecum L.) plants is associated to changes in the hormonal balance

Copyright © 2018 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 232(2019) vom: 01. Jan., Seite 311-319
1. Verfasser: Belmecheri-Cherifi, Hayet (VerfasserIn)
Weitere Verfasser: Albacete, Alfonso, Martínez-Andújar, Cristina, Pérez-Alfocea, Francisco, Abrous-Belbachir, Ouzna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Fenugreek Growth impairment Mineral nutrients Plant hormones Salinity stress Plant Growth Regulators Water 059QF0KO0R Chlorophyll mehr... 1406-65-1 Carotenoids 36-88-4
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier GmbH. All rights reserved.
Fenugreek is a legume cultivated for its medicinal value, especially in arid and semi-arid regions, where soil salinity is an increasing problem. In fact, salinity is one of the major environmental factors limiting plant growth and productivity. Plant hormones are known to play vital roles in the ability of the plants to acclimatize to varying environments by mediating growth, development, and nutrient allocation. Thus, to gain insights about the role of plant hormones in the growth responses of salinized fenugreek plants (Trigonella foenum-graecum L.), a medium-term experiment was conducted under moderate (100 mM NaCl) and high (200 mM NaCl) salinity levels. Results showed that moderate, but especially high salinity stress, impaired shoot growth, total leaf area and leaf number. Salinity also provoked a reduction in relative water content, stomatal conductance and photosynthesis-related pigments, but, surprisingly, photosynthetic rate increased in the leaves of fenugreek plants. Na accumulated in the leaves, particularly at high salinity levels, while most mineral nutrients decreased. Furthermore, important changes in the main hormone classes were observed, associated to growth reduction under salinity. The active cytokinin form, trans-zeatin, and active cytokinin and gibberellin concentrations decreased with salinity in the leaves of fenugreek plants, whereas the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, accumulated in the roots of fenugreek plants, especially at high salinity levels. Importantly, leaf abscisic acid concentrations increased under salinity, which could limit leaf transpiration to adapt growth to the stressful conditions. Therefore, plant hormones seem to play a critical role in the growth responses of fenugreek plants under salinity stress and they could have potential interest in salt tolerance programmes for this species
Beschreibung:Date Completed 22.01.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2018.11.016