Seasonal changes in cold hardiness and carbohydrate metabolism in four garden rose cultivars

Copyright © 2018 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 232(2019) vom: 20. Jan., Seite 188-199
1. Verfasser: Ouyang, Lin (VerfasserIn)
Weitere Verfasser: Leus, Leen, De Keyser, Ellen, Van Labeke, Marie-Christine
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Acclimation Dehydrins Electrolyte leakage Freezing tolerance LT50 Raffinose Starch Sugars Water content
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier GmbH. All rights reserved.
We studied metabolic adaptations to cold stress in roses and identified genes in the carbohydrate pathway during acclimation and deacclimation. A field experiment with four rose cultivars belonging to different USDA plant hardiness zones was set up in Melle, Belgium (51° 0' N, 3° 48' E). The more cold-hardy cultivars ('Dagmar Hastrup' and 'John Cabot') reached their lowest LT50 value in December, indicating a rapid acclimation after the first occurrence of frost. Less cold-hardy cultivars ('Abraham Darby' and 'Chandos Beauty') reached their lowest LT50 in January/February when exposed to prolonged freezing temperatures. A cell dehydration pattern was found in the less cold-hardy cultivars 'Abraham Darby' and 'Chandos Beauty'. The expression of dehydrins (RhDHN5 and RhDNH6) was up-regulated during November-January. Carbohydrate metabolism is highly involved in cold acclimation in roses. Starch decreased from November towards January in all four cultivars and the hydrolysis of starch by the β-amylolytic pathway (BAM, DPE2) was identified in 'Dagmar Hastrup' from November to January. Oligosaccharides correlated with cold hardiness in three cultivars although no significant upregulation in RhMIPS and RhRS6, key genes in their biosynthesis, was found. Higher sucrose levels were found during acclimation in hardy cultivars, although transcript levels of RhINV2 was more prominent in 'Chandos Beauty'
Beschreibung:Date Completed 22.01.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2018.12.001